好消息,先前电脑升级成Big Sur,导致新系统下源码调试有问题,现在Big Sur又更新版本了,已经可以配置源码调试了,这篇文章后将用新的环境来研究。
2.方法调用的流程
2.2——methods查找(慢速查找)
鉴于研究慢速查找,因此对源码修改一下:
@interface Person : NSObject
@property (nonatomic,assign) int age;
@property (nonatomic,strong) NSString *nickname;
@property (nonatomic,assign) float height;
@property (nonatomic,strong) NSString *name;
-(void)laugh;
-(void)cry;
-(void)run;
-(void)jump;
-(void)doNothing;
@end
@implementation Person
-(void)laugh
{
NSLog(@"LMAO");
}
-(void)cry
{
NSLog(@"cry me a river");
}
-(void)run
{
NSLog(@"run! Forrest run!");
}
-(void)jump
{
NSLog(@"you jump,I jump!");
}
-(void)doNothing
{
NSLog(@"Today,I dont wanna do anything~");
}
//-(void)talkShow
//{
// NSLog(@"roast king!");
//}
@end
@interface Saler : Person
@property (nonatomic,strong) NSString *brand;
-(void)talkShow;
+(void)sayGiao;
@end
@implementation Saler
//-(void)talkShow
//{
// NSLog(@"roast king!");
//}
//+(void)sayGiao
//{
// NSLog(@"one geli my giao!");
//}
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
//main方法中
Saler *person = [Saler alloc];
person.age = 10;
person.nickname = @"pp";
person.height = 180.0;
person.name = @"ppext";
person.brand = @"apple";
Saler *saler = [Saler alloc];
saler.age = 28;
saler.nickname = @"xx";
saler.height = 175.0;
saler.name = @"xxext";
saler.brand = @"apple";
//实例方法
// [saler talkShow];
//类方法
[Saler sayGiao];
}
return 0;
}
书接上文,8、方法调用原理(1)中在cache
的查找流程完成后,会调用lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
,下面就对这个方法进行全局搜索,研究一下流程:
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (fastpath(behavior & LOOKUP_CACHE)) {
imp = cache_getImp(cls, sel);
if (imp) goto done_nolock;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
// We don't want people to be able to craft a binary blob that looks like
// a class but really isn't one and do a CFI attack.
//
// To make these harder we want to make sure this is a class that was
// either built into the binary or legitimately registered through
// objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
checkIsKnownClass(cls);
if (slowpath(!cls->isRealized())) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
// runtimeLock may have been dropped but is now locked again
// If sel == initialize, class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
runtimeLock.assertLocked();
curClass = cls;
// The code used to lookpu the class's cache again right after
// we take the lock but for the vast majority of the cases
// evidence shows this is a miss most of the time, hence a time loss.
//
// The only codepath calling into this without having performed some
// kind of cache lookup is class_getInstanceMethod().
for (unsigned attempts = unreasonableClassCount();;) {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
log_and_fill_cache(cls, imp, sel, inst, curClass);
runtimeLock.unlock();
done_nolock:
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
根据上文对MethodTableLookup
源码注释分析知道是这种参数传递调用lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
,与大多数objc-4 781.1
源码类似,这里也分slowpath
和fastpath
分支:
第一
个分支fastpath(behavior & LOOKUP_CACHE)
是判断是否是在查找cache
中的buckets
进入的的lookUpImpOrForward
方法,而且大概率是的,就直接调用cache_getImp
方法,可以参考8、方法的调用原理(1)中objc_MsgSend()
的流程,正常的快速查找
流程。
第二
个分支slowpath(!cls->isRealized())
,显而易见确认类是否是实现的,而且大概率是实现了的,没实现的话,会先进行类的实现再走下一步骤,且类的实现分两种,一种是非Swift
类型的,另一种是Swift
类型。
第三
个分支slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())
,确认behavior
是否是查询类的初始化且类是否已经初始化了,大概率是已经初始化了的,没有的话就对类进行初始化。
第四
个分支for (unsigned attempts = unreasonableClassCount();;)
固定数目循环,unreasonableClassCount
循环次数多少是根据继承链而定,结合4、isa与对象、类的关系的isa走位图
分析如果是实例方法: 实例——类——父类——NSObject
,如果是类方法:类——元类——根元类——NSObject
,断点调试发现会循环制NSObject
的父类,也就是nil
然后就跳出循环了。
第四——一
个分支Method meth = getMethodNoSuper_nolock(curClass, sel)
方法列表中二分法搜寻方法,不搜寻父类的,搜到则跳转至done
代码块。
第四——二
个分支slowpath((curClass = curClass->superclass) == nil)
判断父类是否存在,存在概率很大,并将curClass
变成父类,没有父类就将进入imp = forward_imp
,也就是消息转发
流程。
第四——三
个分支slowpath(--attempts == 0)
判断循环次数是否是0,大概率不为0,如果为0就是内存中类列表被污染,报错。
第四——四
个分支slowpath(imp == forward_imp)
,在这个之前imp = cache_getImp(curClass, sel)
先搜索当前类的缓存是否有这个方法,这里的当前类可能是已经转化为父类了curClass = curClass->superclass
;然后就是判断是否走消息转发
流程,是的话直接跳出循环,大概率不是转发流程。
第四——五
个分支fastpath(imp)
判断imp
是否找到,大概率找到,找到就会走done
代码块。
第五
个分支slowpath(behavior & LOOKUP_RESOLVER)
,判断当前代码流程行为是否是LOOKUP_RESOLVER
,大概率不是,就会走if
的代码块,进入resolveMethod_locked
对方法进行决议,意味着类以及父类中都没发现该方法,resolveMethod_locked
主要是:
static NEVER_INLINE IMP
resolveMethod_locked(id inst, SEL sel, Class cls, int behavior)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
runtimeLock.unlock();
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
resolveInstanceMethod(inst, sel, cls);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
resolveClassMethod(inst, sel, cls);
if (!lookUpImpOrNil(inst, sel, cls)) {
resolveInstanceMethod(inst, sel, cls);
}
}
// chances are that calling the resolver have populated the cache
// so attempt using it
return lookUpImpOrForward(inst, sel, cls, behavior | LOOKUP_CACHE);
}
判断是实例方法
还是类方法
,来发送决议方法消息,并进入lookUpImpOrForward
查找决议方法的IMP
,流程和之前分析lookUpImpOrForward
类似,只不过换做是寻找resolveInstanceMethod
或者resolveClassMethod
,resolveClassMethod
也就是类的InsatanceMethod
,在NSObject
中必然找到这个方法所以必然是找的到的。
最后:
done
: log_and_fill_cache
记录并插入cache
done_nolock
:slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)
判断是否当前流程行为是否是LOOKUP_NIL
且imp == forward_imp
,大概率不是,如果不是将返回nil
。
return
:返回imp
。
到看到forward
和resolve
的方法就可以基本知道,慢速查找基本完成。因为这两个方法将消息发送重新定向了这里两个消息的发送。
如果对这里的分析中的大概率
、小概率
有所疑问,请参考查漏补缺。
2.3——慢速查找补充分析
2.3.1 getMethodNoSuper_nolock
方法
在类信息查找Method
对应的就是在getMethodNoSuper_nolock
方法中:
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// <rdar://problem/46904873> getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
与之前文章6、类结构分析分析lldb
打印对应,通过data
来获得methods
,通过search_method_list_inline
方法类定位对应要找的method_t
,再就是对search_method_list_inline
分析:
ALWAYS_INLINE static method_t *
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
//确定方法列表是否是修正过的
int methodListIsFixedUp = mlist->isFixedUp();
//确定方法列表大小是否正确
int methodListHasExpectedSize = mlist->isExpectedSize();
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name() == sel) return &meth;
}
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name() == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
到这步,在类信息中搜索方法的流程就基本上清楚,这个方法内还有一个findMethodInSortedMethodList
方法是具体的查找算法,也分析一下:
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
ASSERT(list);
auto first = list->begin();
auto base = first;
decltype(first) probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name();
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)(probe - 1)->name()) {
probe--;
}
return &*probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
主要在for
循环内,是逆序的循环,而且每次count >>= 1
,右移一位,这个跨度是多大,在二进制中相当于1/2
,特点很明显二分法查找
。
当查找到keyValue == probeValue
时,下面while
循环是为了找到比当前的probe
更靠前的位置是否还存在这个方法名,注释的解释是需要正确的分类重载
,那大概可以猜测的时分类方法重载时,是会将分类方法插在原有方法之前的位置。
找到后就会返回probe
这个method_t
。
2.3.2 imp = cache_getImp(curClass, sel)
方法
在lookUpImpOrForward
方法中的流程还没有完全分析完成,比较重要的漏掉的,在getMethodNoSuper_nolock
之后有imp = cache_getImp(curClass, sel);
方法,注释就是父类的Cache
,也就是自身的方法列表没找到,先在父类的cache
中查找,这里其实流程和之前文章8、方法的调用原理(1)中的_objc_msgSend
方法中的:CacheLookup NORMAL, _objc_msgSend
方法的调用类似,这里调用的是CacheLookup GETIMP, _cache_getImp
,对照_objc_msgSend
的参数调用的是person
这个对象,获取的是这个对象的isa
。_cache_getImp
传入的参数是curClass
,获取的是这个类的isa
,以为处在for
的死循环中,curClass
是按照实例——类——父类——NSObject
或者类——元类——根元类——NSObject
的变化来的,会循环按这个继承链查找,所以这里会查询父类或者元类的cache
混存中是否存在对应的方法。
2.4——methods查找(慢速查找)总结
慢速查找流程图 这个就是慢速查找基本流程(也是借鉴了大神的图-。-)。这里分析要注意:
1
、for
循环那一段代码块和消息决议resolveMethod_locked
已经涉及了嵌套的调用lookUpImpOrForward
方法,需要开启Debug——>Debug Workflow——>Always Show Disassembly
来断点调试。(lookUpImpOrForward
为什么写的这么凌乱,因为它是一个无限月渎的方法-。-)2
、测试的类和方法,要适当不实现,让流程走向方法无法查找到的情况,就如源码注销的部分代码。3
、整个流程是分代码块分析拼凑形成,最早的分析流程可能很凌乱,但是主要线路是两条:一条是找到imp
,一条是找不到imp
。4
、慢速查找流程没查找到会走向resolveMethod_locked
或者forward
。5
、消息决议方法也会走消息发送流程,即resolveInstanceMethod
也会走objc_msgSend
的流程。
网友评论