Scikit-learn 介绍
Scikit-learn 是开源的 Python 库,通过统一的界面实现机器学习、预处理、交叉验证及可视化算法。
scikit-learnscikit-learn 网站:https://scikit-learn.org
Python 中的机器学习
- 简单有效的数据挖掘和数据分析工具
- 可供所有人访问,并可在各种环境中重复使用
- 基于 NumPy,SciPy 和 matplotlib 构建
- 开源,商业上可用 - BSD 许可证
分类
确定对象属于哪个类别。
应用:垃圾邮件检测,图像识别。
算法: SVM,最近邻居,随机森林,......
回归
预测与对象关联的连续值属性。
应用:药物反应,股票价格。
算法: SVR,岭回归,套索,......
聚类
将类似对象自动分组到集合中。
应用:客户细分,分组实验结果
算法: k-Means,谱聚类,均值漂移,......
降维
减少要考虑的随机变量的数量。
应用:可视化,提高效率
算法: PCA,特征选择,非负矩阵分解。
模型选择
比较,验证和选择参数和模型。
目标:通过参数调整提高准确性
模块: 网格搜索,交叉验证,指标。
预处理
特征提取和规范化。
应用程序:转换输入数据(如文本)以与机器学习算法一起使用。
模块: 预处理,特征提取。
Scikit-learn 机器学习步骤
# 导入 sklearn
from sklearn import neighbors, datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据
iris = datasets.load_iris()
# 划分训练集与测试集
X, y = iris.data[:, :2], iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
# 数据预处理
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# 创建模型
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
# 模型拟合
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)
# 评估
accuracy_score(y_test, y_pred)
导入常用库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
加载数据
Scikit-learn 处理的数据是存储为 NumPy 数组或 SciPy 稀疏矩阵的数字,还支持 Pandas 数据框等可转换为数字数组的其它数据类型。
X = np.random.random((11, 5))
y = np.array(['M', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F', 'F'])
X[X < 0.7] = 0
划分训练集与测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
数据预处理
标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
standardized_X = scaler.transform(X_train)
standardized_X_test = scaler.transform(X_test)
归一化
from sklearn.preprocessing import Normalizer
scaler = Normalizer().fit(X_train)
normalized_X = scaler.transform(X_train)
normalized_X_test = scaler.transform(X_test)
二值化
from sklearn.preprocessing import Binarizer
binarizer = Binarizer(threshold=0.0).fit(X)
binary_X = binarizer.transform(X)
编码分类特征
from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
y = enc.fit_transform(y)
输入缺失值
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values=0, strategy='mean', axis=0)
imp.fit_transform(X_train)
生成多项式特征
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(5)
poly.fit_transform(X)
创建模型估计器
监督学习
# 线性回归
from sklearn.linear_model import LinearRegression
lr = LinearRegression(normalize=True)
# 支持向量机(SVM)
from sklearn.svm import SVC
svc = SVC(kernel='linear')
# 朴素贝叶斯
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
# KNN
from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
无监督学习
# 主成分分析(PCA)
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
pca = PCA(n_components=0.95)
# K Means
k_means = KMeans(n_clusters=3, random_state=0)
拟合数据
监督学习
lr.fit(X, y)
knn.fit(X_train, y_train)
svc.fit(X_train, y_train)
无监督学习
k_means.fit(X_train)
pca_model = pca.fit_transform(X_train)
预测
监督学习
# 预测标签
y_pred = svc.predict(np.random.random((2,5)))
# 预测标签
y_pred = lr.predict(X_test)
# 评估标签概率
y_pred = knn.predict_proba(X_test)
无监督学习
y_pred = k_means.predict(X_test)
评估模型性能
分类指标
# 准确率
knn.score(X_test, y_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
# 分类预估评价函数
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
# 混淆矩阵
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred))
回归指标
# 平均绝对误差
from sklearn.metrics import mean_absolute_error
y_true = [3, -0.5, 2]
mean_absolute_error(y_true, y_pred)
# 均方误差
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred)
# R2 评分
from sklearn.metrics import r2_score
r2_score(y_true, y_pred)
群集指标
# 调整兰德系数
from sklearn.metrics import adjusted_rand_score
adjusted_rand_score(y_true, y_pred)
# 同质性
from sklearn.metrics import homogeneity_score
homogeneity_score(y_true, y_pred)
# V-measure
from sklearn.metrics import v_measure_score
metrics.v_measure_score(y_true, y_pred)
交叉验证
from sklearn.cross_validation import cross_val_score
print(cross_val_score(knn, X_train, y_train, cv=4))
print(cross_val_score(lr, X, y, cv=2))
模型调整
网格搜索
from sklearn.grid search import GridSearchcV
params = {"n neighbors": np.arange(1, 3),
"metric": ["euclidean", "cityblock"]}
grid = GridSearchCV(estimator=knn,
param_grid-params)
grid.fit(X_train, y_train)
print(grid.best score)
print(grid.best_estimator_.n_neighbors)
随机参数优化
from sklearn.grid_search import RandomizedSearchCV
params = {"n_neighbors": range(1, 5),
"weights": ["uniform", "distance"]}
rsearch = RandomizedSearchCV(estimator=knn,
rsearch.fit(X_train, y_train) random_state=5)
print(rsearch.best_score_)
网友评论