
```
[ModuleList(
(0): None
(1): Sequential(
(0): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(2): Sequential(
(0): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(3): Sequential(
(0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
), ModuleList(
(0): Sequential(
(0): Sequential(
(0): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): None
(2): Sequential(
(0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(3): Sequential(
(0): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
), ModuleList(
(0): Sequential(
(0): Sequential(
(0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): Sequential(
(0): Conv2d(48, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): Sequential(
(0): Sequential(
(0): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(2): None
(3): Sequential(
(0): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
), ModuleList(
(0): Sequential(
(0): Sequential(
(0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): Sequential(
(0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(2): Sequential(
(0): Conv2d(48, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): Sequential(
(0): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): Sequential(
(0): Conv2d(96, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(2): Sequential(
(0): Sequential(
(0): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(3): None
)]
```

网友评论