美文网首页
090-BigData-18Flume

090-BigData-18Flume

作者: AncientMing | 来源:发表于2019-10-07 20:52 被阅读0次

    上一篇:089-BigData-17ZooKeeper秒杀和hadoop高可用

    一、Flume简介

    1. Flume提供一个分布式的,可靠的,对大数据量的日志进行高效收集、聚集、移动的服务,Flume只能在Unix环境下运行。

    2. Flume基于流式架构,容错性强,也很灵活简单。

    3. Flume、Kafka用来实时进行数据收集,Spark、Flink用来实时处理数据,impala用来实时查询。

    二、Flume角色

    image.png

    2.1、Source

    用于采集数据,Source是产生数据流的地方,同时Source会将产生的数据流传输到Channel,这个有点类似于Java IO部分的Channel。

    2.2、Channel

    用于桥接Sources和Sinks,类似于一个队列。

    2.3、Sink

    从Channel收集数据,将数据写到目标源(可以是下一个Source,也可以是HDFS或者HBase)。

    2.4、Event

    传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。

    三、Flume传输过程

    source监控某个文件或数据流,数据源产生新的数据,拿到该数据后,将数据封装在一个Event中,并put到channel后commit提交,channel队列先进先出,sink去channel队列中拉取数据,然后写入到HDFS中。

    四、Flume部署及使用

    4.1、文件配置
    查询JAVA_HOME: echo $JAVA_HOME

    /opt/module/jdk1.8.0_144  /opt/module/jdk1.8.0_144
    

    安装Flume

    [AncientMing@bigdata113 software]$ tar -zxvf apache-flume1.8.0-bin.tar.gz -C /opt/module/
    

    改名:

    [AncientMing@bigdata113 conf]$ mv flume-env.sh.template flume-env.sh
    

    flume-env.sh涉及修改项:

    export JAVA_HOME=/opt/module/jdk1.8.0_144
    

    Linux中文件上传命令是:rz,下载:sz 如果没有这两个命令使用yum下载:yum install lrzsz

    4.2、案例
    4.2.1、案例一:监控端口数据
    目标:Flume监控一端Console,另一端Console发送消息,使被监控端实时显示。
    分步实现:

    1. 安装telnet工具
    image.png
    1. 创建Flume Agent配置文件flume-telnet.conf
    #定义Agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #定义netcatsource
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = bigdata111
    a1.sources.r1.port = 44445
    
    # 定义sink
    a1.sinks.k1.type = logger
    
    # 定义channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # 双向链接
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    1. 判断44444端口是否被占用
    $ netstat -tunlp | grep 44445
    
    1. 启动flume配置文件
    /opt/module/flume-1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a1 \
    --conf-file /opt/module/flume-1.8.0/jobconf/flume-telnet.conf \
    -Dflume.root.logger==INFO,console
    
    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flume-telnet.conf -Dflume.root.logger==INFO,console
    
    1. 使用telnet工具向本机的44444端口发送内容
    $ telnet bigdata111 44445
    

    4.2.2、案例二:实时读取本地文件到HDFS

    1. 创建flume-hdfs.conf文件
    # 1 agent
    a2.sources = r2
    a2.sinks = k2
    a2.channels = c2
    
    # 2 source
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -F /opt/plus
    a2.sources.r2.shell = /bin/bash -c
    
    # 3 sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://bigdata111:9000/flume/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k2.hdfs.filePrefix = logs-
    #是否按照时间滚动文件夹
    a2.sinks.k2.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k2.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k2.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k2.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k2.hdfs.batchSize = 1000
    #设置文件类型,可支持压缩
    a2.sinks.k2.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k2.hdfs.rollInterval = 600
    #设置每个文件的滚动大小
    a2.sinks.k2.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k2.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k2.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    
    
    1. 执行监控配置
    /opt/module/flume1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a2 \
    --conf-file /opt/module/flume1.8.0/jobconf/flume-hdfs.conf
    

    4.2.3、案例三:实时读取目录文件到HDFS
    目标:使用flume监听整个目录的文件
    分步实现:

    1. 创建配置文件flume-dir.conf
    #1 Agent
    a3.sources = r3
    a3.sinks = k3
    a3.channels = c3
    
    #2 source
    #监控目录的类型
    a3.sources.r3.type = spooldir
    #监控目录的路径
    a3.sources.r3.spoolDir = /opt/module/flume1.8.0/upload
    #哪个文件上传hdfs,然后给这个文件添加一个后缀
    a3.sources.r3.fileSuffix = .COMPLETED
    a3.sources.r3.fileHeader = true
    #忽略所有以.tmp结尾的文件,不上传(可选)
    a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
    
    # 3 sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://bigdata111:9000/flume/%H
    #上传文件的前缀
    a3.sinks.k3.hdfs.filePrefix = upload-
    #是否按照时间滚动文件夹
    a3.sinks.k3.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k3.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k3.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k3.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k3.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k3.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k3.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k3.hdfs.rollCount = 0
    #最小副本数
    a3.sinks.k3.hdfs.minBlockReplicas = 1
    
    
    1. 执行测试:执行如下脚本后,请向upload文件夹中添加文件试试
    /opt/module/flume1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a3 \
    --conf-file /opt/module/flume1.8.0/jobconf/flume-dir.conf
    

    尖叫提示: 在使用Spooling Directory Source时

    1. 不要在监控目录中创建并持续修改文件
    2. 上传完成的文件会以.COMPLETED结尾
    3. 被监控文件夹每500毫秒扫描一次文件变动

    4.2.4、案例四:Flume与Flume之间数据传递:单Flume多Channel、Sink

    image.png

    目标:使用flume1监控文件变动,flume1将变动内容传递给flume-2,flume-2负责存储到HDFS。同时flume1将变动内容传递给flume-3,flume-3负责输出到local
    分步实现:

    1. 创建flume1.conf,用于监控某文件的变动,同时产生两个channel和两个sink分别输送给flume2和flume3:
    # 1.agent
    a1.sources = r1
    a1.sinks = k1 k2
    a1.channels = c1 c2
    # 将数据流复制给多个channel
    a1.sources.r1.selector.type = replicating
    
    # 2.source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.shell = /bin/bash -c
    
    # 3.sink1
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = bigdata111
    a1.sinks.k1.port = 4141
    
    # sink2
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = bigdata111
    a1.sinks.k2.port = 4142
    
    # 4.channel—1
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # 4.channel—2
    a1.channels.c2.type = memory
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 c2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2
    
    1. 创建flume-2.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给hdfs:
    # 1 agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # 2 source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = bigdata111
    a2.sources.r1.port = 4141
    
    # 3 sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume2/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    
    # 4 channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    
    1. 创建flume-3.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给本地目录:
    #1 agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # 2 source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata111
    a3.sources.r1.port = 4142
    
    #3 sink
    a3.sinks.k1.type = file_roll
    #备注:此处的文件夹需要先创建好
    a3.sinks.k1.sink.directory = /opt/flume3
    
    # 4 channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    

    尖叫提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

    1. 执行测试:分别开启对应flume-job(依次启动flume1,flume-2,flume-3),同时产生文件变动并观察结果:
    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume1.conf
    
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume2.conf
    
    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume3.conf
    

    4.2.5、案例五:Flume与Flume之间数据传递,多Flume汇总数据到单Flume

    image.png

    目标:flume11监控文件hive.log,flume-22监控某一个端口的数据流,flume11与flume-22将数据发送给flume-33,flume33将最终数据写入到HDFS。
    分步实现:

    1. 创建flume11.conf,用于监控hive.log文件,同时sink数据到flume-33:
    # 1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # 2 source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.shell = /bin/bash -c
    
    # 3 sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = bigdata111
    a1.sinks.k1.port = 4141
    
    # 4 channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # 5. Bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    1. 创建flume-22.conf,用于监控端口44444数据流,同时sink数据到flume-33:
    # 1 agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # 2 source
    a2.sources.r1.type = netcat
    a2.sources.r1.bind = bigdata111
    a2.sources.r1.port = 44444
    
    #3 sink
    a2.sinks.k1.type = avro
    a2.sinks.k1.hostname = bigdata111
    a2.sinks.k1.port = 4141
    
    # 4 channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
    1. 创建flume33.conf,用于接收flume11与flume22发送过来的数据流,最终合并后sink到HDFS:
    # 1 agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # 2 source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata111
    a3.sources.r1.port = 4141
    
    # 3 sink
    a3.sinks.k1.type = hdfs
    a3.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume3/%H
    #上传文件的前缀
    a3.sinks.k1.hdfs.filePrefix = flume3-
    #是否按照时间滚动文件夹
    a3.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k1.hdfs.rollCount = 0
    #最小冗余数
    a3.sinks.k1.hdfs.minBlockReplicas = 1
    
    # 4 channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    
    
    1. 执行测试:分别开启对应flume-job(依次启动flume-33,flume-22,flume11),同时产生文件变动并观察结果:
    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume33.conf
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume22.conf
    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume11.conf
    

    数据发送

    telnet bigdata111 44444    打开后发送5555555
    
    在/opt/Andy 中追加666666
    

    4.2.6、案例六:Flume拦截器
    时间戳拦截器
    Timestamp.conf

    #1.定义agent名, source、channel、sink的名称
    a4.sources = r1
    a4.channels = c1
    a4.sinks = k1
    
    #2.具体定义source
    a4.sources.r1.type = spooldir
    a4.sources.r1.spoolDir = /opt/module/flume-1.8.0/upload
    
    #定义拦截器,为文件最后添加时间戳
    a4.sources.r1.interceptors = i1
    a4.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
    
    #具体定义channel
    a4.channels.c1.type = memory
    a4.channels.c1.capacity = 10000
    a4.channels.c1.transactionCapacity = 100
    
    
    #具体定义sink
    a4.sinks.k1.type = hdfs
    a4.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume-interceptors/%H
    a4.sinks.k1.hdfs.filePrefix = events-
    a4.sinks.k1.hdfs.fileType = DataStream
    
    #不按照条数生成文件
    a4.sinks.k1.hdfs.rollCount = 0
    #HDFS上的文件达到128M时生成一个文件
    a4.sinks.k1.hdfs.rollSize = 134217728
    #HDFS上的文件达到60秒生成一个文件
    a4.sinks.k1.hdfs.rollInterval = 60
    
    #组装source、channel、sink
    a4.sources.r1.channels = c1
    a4.sinks.k1.channel = c1
    

    启动命令

    /opt/module/flume-1.8.0/bin/flume-ng agent -n a4 \
    -f /opt/module/flume-1.8.0/jobconf/flume-interceptors.conf \
    -c /opt/module/flume-1.8.0/conf \
    -Dflume.root.logger=INFO,console
    

    主机名拦截器

    Host.conf

    #1.定义agent
    a1.sources= r1
    a1.sinks = k1
    a1.channels = c1
    
    #2.定义source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    #拦截器
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = host
    
    #参数为true时用IP192.168.1.111,参数为false时用主机名,默认为true
    a1.sources.r1.interceptors.i1.useIP = false
    a1.sources.r1.interceptors.i1.hostHeader = agentHost
    
     #3.定义sinks
    a1.sinks.k1.type=hdfs
    a1.sinks.k1.channel = c1
    a1.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flumehost/%H
    a1.sinks.k1.hdfs.filePrefix = Andy_%{agentHost}
    #往生成的文件加后缀名.log
    a1.sinks.k1.hdfs.fileSuffix = .log
    a1.sinks.k1.hdfs.fileType = DataStream
    a1.sinks.k1.hdfs.writeFormat = Text
    a1.sinks.k1.hdfs.rollInterval = 10
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
     
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
     
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    启动命令:

    bin/flume-ng agent -c conf/ -f jobconf/host.conf -n a1 -Dflume.root.logger=INFO,console
    

    UUID拦截器
    uuid.conf

    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    #type的参数不能写成uuid,得写具体,否则找不到类
    a1.sources.r1.interceptors.i1.type = org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
    #如果UUID头已经存在,它应该保存
    a1.sources.r1.interceptors.i1.preserveExisting = true
    a1.sources.r1.interceptors.i1.prefix = UUID_
    
    #如果sink类型改为HDFS,那么在HDFS的文本中没有headers的信息数据
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/uuid.conf -n a1 -Dflume.root.logger==INFO,console
    

    查询替换拦截器
    search.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = search_replace
    
    #遇到数字改成AncientMing,A123会替换为AAncientMing
    a1.sources.r1.interceptors.i1.searchPattern = [0-9]+
    a1.sources.r1.interceptors.i1.replaceString = AncientMing
    a1.sources.r1.interceptors.i1.charset = UTF-8
    
    #3 sink
    a1.sinks.k1.type = logger
    
    #4 Chanel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    #5 bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/search.conf -n a1 -Dflume.root.logger=INFO,console
    

    正则过滤拦截器
    filter.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_filter
    a1.sources.r1.interceptors.i1.regex = ^A.*
    #如果excludeEvents设为false,表示过滤掉不是以A开头的events。如果excludeEvents设为true,则表示过滤掉以A开头的events。
    a1.sources.r1.interceptors.i1.excludeEvents = true
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/filter.conf -n a1 -Dflume.root.logger=INFO,console
    

    正则抽取拦截器
    extractor.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_extractor
    a1.sources.r1.interceptors.i1.regex = hostname is (.*?) ip is (.*)
    a1.sources.r1.interceptors.i1.serializers = s1 s2
    a1.sources.r1.interceptors.i1.serializers.s1.name = cookieid
    a1.sources.r1.interceptors.i1.serializers.s2.name = ip
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/extractor.conf -n a1 -Dflume.root.logger=INFO,console
    

    注:正则抽取拦截器的headers不会出现在文件名和文件内容中

    4.2.7、案例七:Flume自定义拦截器
    字母小写变大写

    1.Pom.xml

     <dependencies>
            <!-- flume核心依赖 -->
            <dependency>
                <groupId>org.apache.flume</groupId>
                <artifactId>flume-ng-core</artifactId>
                <version>1.8.0</version>
            </dependency>
        </dependencies>
        <build>
            <plugins>
                <!-- 打包插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-jar-plugin</artifactId>
                    <version>2.4</version>
                    <configuration>
                        <archive>
                            <manifest>
                                <addClasspath>true</addClasspath>
                                <classpathPrefix>lib/</classpathPrefix>
                                <mainClass></mainClass>
                            </manifest>
                        </archive>
                    </configuration>
                </plugin>
                <!-- 编译插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                        <encoding>utf-8</encoding>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    

    2.自定义实现拦截器

    import org.apache.flume.Context;
    import org.apache.flume.Event;
    import org.apache.flume.interceptor.Interceptor;
     
    import java.util.ArrayList;
    import java.util.List;
     
    public class MyInterceptor implements Interceptor {
        @Override
        public void initialize() {
        }
     
        @Override
        public void close() {
        }
     
        /**
         * 拦截source发送到通道channel中的消息
         *
         * @param event 接收过滤的event
         * @return event    根据业务处理后的event
         */
        @Override
        public Event intercept(Event event) {
            // 获取事件对象中的字节数据
            byte[] arr = event.getBody();
            // 将获取的数据转换成大写
            event.setBody(new String(arr).toUpperCase().getBytes());
            // 返回到消息中
            return event;
        }
        // 接收被过滤事件集合
        @Override
        public List<Event> intercept(List<Event> events) {
            List<Event> list = new ArrayList<>();
            for (Event event : events) {
                list.add(intercept(event));
            }
            return list;
        }
     
        public static class Builder implements Interceptor.Builder {
            // 获取配置文件的属性
            @Override
            public Interceptor build() {
                return new MyInterceptor();
            }
     
            @Override
            public void configure(Context context) {
     
            }
        }
    

    使用Maven做成Jar包,在flume的目录下mkdir jar,上传此jar到jar目录中

    Flume配置文件

    ToUpCase.conf

    #1.agent 
    a1.sources = r1
    a1.sinks =k1
    a1.channels = c1
     
     
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    #全类名$Builder
    a1.sources.r1.interceptors.i1.type = ToUpCase.MyInterceptor$Builder
     
    # Describe the sink
    a1.sinks.k1.type = hdfs
    a1.sinks.k1.hdfs.path = /ToUpCase1
    a1.sinks.k1.hdfs.filePrefix = events-
    a1.sinks.k1.hdfs.round = true
    a1.sinks.k1.hdfs.roundValue = 10
    a1.sinks.k1.hdfs.roundUnit = minute
    a1.sinks.k1.hdfs.rollInterval = 3
    a1.sinks.k1.hdfs.rollSize = 20
    a1.sinks.k1.hdfs.rollCount = 5
    a1.sinks.k1.hdfs.batchSize = 1
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
    #生成的文件类型,默认是 Sequencefile,可用 DataStream,则为普通文本
    a1.sinks.k1.hdfs.fileType = DataStream
     
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
     
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    运行命令:

    bin/flume-ng agent -c conf/ -n a1 -f jar/ToUpCase.conf -C jar/Flume-1.0-SNAPSHOT.jar -Dflume.root.logger=DEBUG,console
    

    4.2.8、案例七:Flume对接kafka

    配置flume(flume-kafka.conf)

    # define
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F -c +0 /opt/jars/calllog.csv
    a1.sources.r1.shell = /bin/bash -c
    
    # sink
    a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
    a1.sinks.k1.brokerList = bigdata111:9092,bigdata112:9092,bigdata113:9092
    a1.sinks.k1.topic = calllog
    a1.sinks.k1.batchSize = 20
    a1.sinks.k1.requiredAcks = 1
    
    # channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    进入flume根目录下,启动flume

    /opt/module/flume-1.8.0/bin/flume-ng agent --conf /opt/module/flume-1.8.0/conf/ --name a1 --conf-file /opt/jars/flume2kafka.conf
    

    4.2.9、案例八:kafka对接Flume
    kafka2flume.conf

    agent.sources = kafkaSource
    agent.channels = memoryChannel
    agent.sinks = hdfsSink
    
    # The channel can be defined as follows.
    agent.sources.kafkaSource.channels = memoryChannel
    agent.sources.kafkaSource.type=org.apache.flume.source.kafka.KafkaSource
    agent.sources.kafkaSource.zookeeperConnect=bigdata111:2181,bigdata112:2181,bigdata113:2181
    agent.sources.kafkaSource.topic=calllog
    #agent.sources.kafkaSource.groupId=flume
    agent.sources.kafkaSource.kafka.consumer.timeout.ms=100
    
    
    agent.channels.memoryChannel.type=memory
    agent.channels.memoryChannel.capacity=10000
    agent.channels.memoryChannel.transactionCapacity=1000
    agent.channels.memoryChannel.type=memory
    agent.channels.memoryChannel.capacity=10000
    agent.channels.memoryChannel.transactionCapacity=1000
    
    
    # the sink of hdfs
    agent.sinks.hdfsSink.type=hdfs
    agent.sinks.hdfsSink.channel = memoryChannel
    agent.sinks.hdfsSink.hdfs.path=hdfs://bigdata111:9000/kafka2flume
    agent.sinks.hdfsSink.hdfs.writeFormat=Text
    agent.sinks.hdfsSink.hdfs.fileType=DataStream
    #这两个不配置,会产生大量的小文件
    agent.sinks.hdfsSink.hdfs.rollSize=0
    agent.sinks.hdfsSink.hdfs.rollCount=0
    

    启动命令

    bin/flume-ng agent --conf conf --conf-file jobconf/kafka2flume.conf --name agent -Dflume.root.logger=INFO,console
    

    注意:这个配置是从kafka过数据,但是需要重新向kafka的topic灌数据,他才会传到HDFS

    嗯,需要多练习,实战!

    rz和sz工具,上传和下载工具

    yum install -y lrzsz
    

    下一篇:091-BigData-19Flume与Flume之间数据传递

    相关文章

      网友评论

          本文标题:090-BigData-18Flume

          本文链接:https://www.haomeiwen.com/subject/zfrfyctx.html