美文网首页
Ta-lib 函数一览

Ta-lib 函数一览

作者: IBM_LELE | 来源:发表于2018-11-25 16:21 被阅读0次

    import tkinter as tk

    from tkinter import ttk

    import matplotlib.pyplot as plt

    import numpy as np

    import talib as ta

    series = np.random.choice([1, -1], size=200)

    close = np.cumsum(series).astype(float)

    # 重叠指标

    def overlap_process(event):

        print(event.widget.get())

        overlap = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(overlap, fontproperties="SimHei")

        if overlap == '布林线':

            pass

        elif overlap == '双指数移动平均线':

            real = ta.DEMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '指数移动平均线 ':

            real = ta.EMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '希尔伯特变换——瞬时趋势线':

            real = ta.HT_TRENDLINE(close)

            axes[1].plot(real, 'r-')

        elif overlap == '考夫曼自适应移动平均线':

            real = ta.KAMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '移动平均线':

            real = ta.MA(close, timeperiod=30, matype=0)

            axes[1].plot(real, 'r-')

        elif overlap == 'MESA自适应移动平均':

            mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0)

            axes[1].plot(mama, 'r-')

            axes[1].plot(fama, 'g-')

        elif overlap == '变周期移动平均线':

            real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)

            axes[1].plot(real, 'r-')

        elif overlap == '简单移动平均线':

            real = ta.SMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '三指数移动平均线(T3)':

            real = ta.T3(close, timeperiod=5, vfactor=0)

            axes[1].plot(real, 'r-')

        elif overlap == '三指数移动平均线':

            real = ta.TEMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '三角形加权法 ':

            real = ta.TRIMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif overlap == '加权移动平均数':

            real = ta.WMA(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        plt.show()

    # 动量指标

    def momentum_process(event):

        print(event.widget.get())

        momentum = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(momentum, fontproperties="SimHei")

        if momentum == '绝对价格振荡器':

            real = ta.APO(close, fastperiod=12, slowperiod=26, matype=0)

            axes[1].plot(real, 'r-')

        elif momentum == '钱德动量摆动指标':

            real = ta.CMO(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif momentum == '移动平均收敛/散度':

            macd, macdsignal, macdhist = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9)

            axes[1].plot(macd, 'r-')

            axes[1].plot(macdsignal, 'g-')

            axes[1].plot(macdhist, 'b-')

        elif momentum == '带可控MA类型的MACD':

            macd, macdsignal, macdhist = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)

            axes[1].plot(macd, 'r-')

            axes[1].plot(macdsignal, 'g-')

            axes[1].plot(macdhist, 'b-')

        elif momentum == '移动平均收敛/散度 固定 12/26':

            macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9)

            axes[1].plot(macd, 'r-')

            axes[1].plot(macdsignal, 'g-')

            axes[1].plot(macdhist, 'b-')

        elif momentum == '动量':

            real = ta.MOM(close, timeperiod=10)

            axes[1].plot(real, 'r-')

        elif momentum == '比例价格振荡器':

            real = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0)

            axes[1].plot(real, 'r-')

        elif momentum == '变化率':

            real = ta.ROC(close, timeperiod=10)

            axes[1].plot(real, 'r-')

        elif momentum == '变化率百分比':

            real = ta.ROCP(close, timeperiod=10)

            axes[1].plot(real, 'r-')

        elif momentum == '变化率的比率':

            real = ta.ROCR(close, timeperiod=10)

            axes[1].plot(real, 'r-')

        elif momentum == '变化率的比率100倍':

            real = ta.ROCR100(close, timeperiod=10)

            axes[1].plot(real, 'r-')

        elif momentum == '相对强弱指数':

            real = ta.RSI(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif momentum == '随机相对强弱指标':

            fastk, fastd = ta.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)

            axes[1].plot(fastk, 'r-')

            axes[1].plot(fastd, 'r-')

        elif momentum == '三重光滑EMA的日变化率':

            real = ta.TRIX(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        plt.show()

    # 周期指标

    def cycle_process(event):

        print(event.widget.get())

        cycle = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(cycle, fontproperties="SimHei")

        if cycle == '希尔伯特变换——主要的循环周期':

            real = ta.HT_DCPERIOD(close)

            axes[1].plot(real, 'r-')

        elif cycle == '希尔伯特变换,占主导地位的周期阶段':

            real = ta.HT_DCPHASE(close)

            axes[1].plot(real, 'r-')

        elif cycle == '希尔伯特变换——相量组件':

            inphase, quadrature = ta.HT_PHASOR(close)

            axes[1].plot(inphase, 'r-')

            axes[1].plot(quadrature, 'g-')

        elif cycle == '希尔伯特变换——正弦曲线':

            sine, leadsine = ta.HT_SINE(close)

            axes[1].plot(sine, 'r-')

            axes[1].plot(leadsine, 'g-')

        elif cycle == '希尔伯特变换——趋势和周期模式':

            integer = ta.HT_TRENDMODE(close)

            axes[1].plot(integer, 'r-')

        plt.show()

    # 统计功能

    def statistic_process(event):

        print(event.widget.get())

        statistic = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(statistic, fontproperties="SimHei")

        if statistic == '线性回归':

            real = ta.LINEARREG(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif statistic == '线性回归角度':

            real = ta.LINEARREG_ANGLE(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif statistic == '线性回归截距':

            real = ta.LINEARREG_INTERCEPT(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif statistic == '线性回归斜率':

            real = ta.LINEARREG_SLOPE(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif statistic == '标准差':

            real = ta.STDDEV(close, timeperiod=5, nbdev=1)

            axes[1].plot(real, 'r-')

        elif statistic == '时间序列预测':

            real = ta.TSF(close, timeperiod=14)

            axes[1].plot(real, 'r-')

        elif statistic == '方差':

            real = ta.VAR(close, timeperiod=5, nbdev=1)

            axes[1].plot(real, 'r-')

        plt.show()

    # 数学变换

    def math_transform_process(event):

        print(event.widget.get())

        math_transform = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(math_transform, fontproperties="SimHei")

        if math_transform == '反余弦':

            real = ta.ACOS(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '反正弦':

            real = ta.ASIN(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '反正切':

            real = ta.ATAN(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '向上取整':

            real = ta.CEIL(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '余弦':

            real = ta.COS(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '双曲余弦':

            real = ta.COSH(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '指数':

            real = ta.EXP(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '向下取整':

            real = ta.FLOOR(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '自然对数':

            real = ta.LN(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '常用对数':

            real = ta.LOG10(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '正弦':

            real = ta.SIN(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '双曲正弦':

            real = ta.SINH(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '平方根':

            real = ta.SQRT(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '正切':

            real = ta.TAN(close)

            axes[1].plot(real, 'r-')

        elif math_transform == '双曲正切':

            real = ta.TANH(close)

            axes[1].plot(real, 'r-')

        plt.show()

    # 数学操作

    def math_operator_process(event):

        print(event.widget.get())

        math_operator = event.widget.get()

        upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

        fig, axes = plt.subplots(2, 1, sharex=True)

        ax1, ax2 = axes[0], axes[1]

        axes[0].plot(close, 'rd-', markersize=3)

        axes[0].plot(upperband, 'y-')

        axes[0].plot(middleband, 'b-')

        axes[0].plot(lowerband, 'y-')

        axes[0].set_title(math_operator, fontproperties="SimHei")

        if math_operator == '指定的期间的最大值':

            real = ta.MAX(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif math_operator == '指定的期间的最大值的索引':

            integer = ta.MAXINDEX(close, timeperiod=30)

            axes[1].plot(integer, 'r-')

        elif math_operator == '指定的期间的最小值':

            real = ta.MIN(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        elif math_operator == '指定的期间的最小值的索引':

            integer = ta.MININDEX(close, timeperiod=30)

            axes[1].plot(integer, 'r-')

        elif math_operator == '指定的期间的最小和最大值':

            min, max = ta.MINMAX(close, timeperiod=30)

            axes[1].plot(min, 'r-')

            axes[1].plot(max, 'r-')

        elif math_operator == '指定的期间的最小和最大值的索引':

            minidx, maxidx = ta.MINMAXINDEX(close, timeperiod=30)

            axes[1].plot(minidx, 'r-')

            axes[1].plot(maxidx, 'r-')

        elif math_operator == '合计':

            real = ta.SUM(close, timeperiod=30)

            axes[1].plot(real, 'r-')

        plt.show()

    root = tk.Tk()

    # 第一行:重叠指标

    rowframe1 = tk.Frame(root)

    rowframe1.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe1, text="重叠指标").pack(side=tk.LEFT)

    overlap_indicator = tk.StringVar() # 重叠指标

    combobox1 = ttk.Combobox(rowframe1, textvariable=overlap_indicator)

    combobox1['values'] = ['布林线','双指数移动平均线','指数移动平均线 ','希尔伯特变换——瞬时趋势线',

                          '考夫曼自适应移动平均线','移动平均线','MESA自适应移动平均','变周期移动平均线',

                          '简单移动平均线','三指数移动平均线(T3)','三指数移动平均线','三角形加权法 ','加权移动平均数']

    combobox1.current(0)

    combobox1.pack(side=tk.LEFT)

    combobox1.bind('<<ComboboxSelected>>', overlap_process)

    # 第二行:动量指标

    rowframe2 = tk.Frame(root)

    rowframe2.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe2, text="动量指标").pack(side=tk.LEFT)

    momentum_indicator = tk.StringVar() # 动量指标

    combobox2 = ttk.Combobox(rowframe2, textvariable=momentum_indicator)

    combobox2['values'] = ['绝对价格振荡器','钱德动量摆动指标','移动平均收敛/散度','带可控MA类型的MACD',

                          '移动平均收敛/散度 固定 12/26','动量','比例价格振荡器','变化率','变化率百分比',

                          '变化率的比率','变化率的比率100倍','相对强弱指数','随机相对强弱指标','三重光滑EMA的日变化率']

    combobox2.current(0)

    combobox2.pack(side=tk.LEFT)

    combobox2.bind('<<ComboboxSelected>>', momentum_process)

    # 第三行:周期指标

    rowframe3 = tk.Frame(root)

    rowframe3.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe3, text="周期指标").pack(side=tk.LEFT)

    cycle_indicator = tk.StringVar() # 周期指标

    combobox3 = ttk.Combobox(rowframe3, textvariable=cycle_indicator)

    combobox3['values'] = ['希尔伯特变换——主要的循环周期','希尔伯特变换——主要的周期阶段','希尔伯特变换——相量组件',

                          '希尔伯特变换——正弦曲线','希尔伯特变换——趋势和周期模式']

    combobox3.current(0)

    combobox3.pack(side=tk.LEFT)

    combobox3.bind('<<ComboboxSelected>>', cycle_process)

    # 第四行:统计功能

    rowframe4 = tk.Frame(root)

    rowframe4.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe4, text="统计功能").pack(side=tk.LEFT)

    statistic_indicator = tk.StringVar() # 统计功能

    combobox4 = ttk.Combobox(rowframe4, textvariable=statistic_indicator)

    combobox4['values'] = ['贝塔系数;投资风险与股市风险系数','皮尔逊相关系数','线性回归','线性回归角度',

                          '线性回归截距','线性回归斜率','标准差','时间序列预测','方差']

    combobox4.current(0)

    combobox4.pack(side=tk.LEFT)

    combobox4.bind('<<ComboboxSelected>>', statistic_process)

    # 第五行:数学变换

    rowframe5 = tk.Frame(root)

    rowframe5.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe5, text="数学变换").pack(side=tk.LEFT)

    math_transform = tk.StringVar() # 数学变换

    combobox5 = ttk.Combobox(rowframe5, textvariable=math_transform_process)

    combobox5['values'] = ['反余弦','反正弦','反正切','向上取整','余弦','双曲余弦','指数','向下取整',

                          '自然对数','常用对数','正弦','双曲正弦','平方根','正切','双曲正切']

    combobox5.current(0)

    combobox5.pack(side=tk.LEFT)

    combobox5.bind('<<ComboboxSelected>>', math_transform_process)

    # 第六行:数学操作

    rowframe6 = tk.Frame(root)

    rowframe6.pack(side=tk.TOP, ipadx=3, ipady=3)

    tk.Label(rowframe6, text="数学操作").pack(side=tk.LEFT)

    math_operator = tk.StringVar() # 数学操作

    combobox6 = ttk.Combobox(rowframe6, textvariable=math_operator_process)

    combobox6['values'] = ['指定期间的最大值','指定期间的最大值的索引','指定期间的最小值','指定期间的最小值的索引',

                          '指定期间的最小和最大值','指定期间的最小和最大值的索引','合计']

    combobox6.current(0)

    combobox6.pack(side=tk.LEFT)

    combobox6.bind('<<ComboboxSelected>>', math_operator_process)

    root.mainloop()

    原文地址

    相关文章

      网友评论

          本文标题:Ta-lib 函数一览

          本文链接:https://www.haomeiwen.com/subject/zgipqqtx.html