上一节已经介绍了怎么定义网络,计算损失函数以及更新权重,这一节将介绍如何开始训练模型。
What about data?
当你处理图像、文本、音频、视频数据时,你可以使用标准的python包加载数据,然后将其转换成torch.Tensor。
- 对于图像,常用包有Pillow,Opencv
- 对于音频,常用包有scipy,librosa
- 对于文本,基础python,Cython,NLTK和SpaCy都很常用。
对于视觉,有一个专门的库叫torchvision,它为常用数据集:ImageNet,CIFAR10,MNIST等提供了数据加载,还为图像提供了数据转换。
在这篇教程中,我们会使用CIFAR10数据集,它有‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck'类别图像,图像大小为3x32x32。
Training an image classifier
我们将会实现以下步骤:
- 使用torchvision加载并归一化CIFAR10数据集
- 定义卷积神经网络
- 定义损失函数
- 训练网络
- 测试网络
- 加载并归一化CIFAR10
使用torchvision,加载CIFAR10将会变得非常简单:
import torch
import torchvision
import torchvision.transforms as transforms
# load CIFAR10 data and normalize
transform = transforms.Compose([transforms.toTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# train dataset
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
# test dataset
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
运行结果:
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data\cifar-10-python.tar.gz
100.0%Extracting ./data\cifar-10-python.tar.gz to ./data
Files already downloaded and verified
torchvision数据集的输出是PILImage图像,像素值范围[0,1]。上面的transform做了两个操作,一个是转成Tensor,另一个是归一化像素值到[-1,1]。
如果在Windows上运行并输出BrokenPipeError,可以尝试设置torch.utils.data.DataLoader() 的参数num_worker=0。
- 定义卷积神经网络
模型代码如下:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
- 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
- 训练网络
# training
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
input, labels = data # get (input, label)
optimizer.zero_grad() # set zero gradient
output = net(input) # forward
loss = criterion(output, labels) # loss
loss.backward() # back prop
optimizer.step() # update net parameters
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finish Training')
# save model
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
输出结果:
[1, 2000] loss: 2.200
[1, 4000] loss: 1.866
[1, 6000] loss: 1.678
[1, 8000] loss: 1.580
[1, 10000] loss: 1.527
[1, 12000] loss: 1.461
[2, 2000] loss: 1.374
[2, 4000] loss: 1.364
[2, 6000] loss: 1.339
[2, 8000] loss: 1.324
[2, 10000] loss: 1.323
[2, 12000] loss: 1.272
Finish Training![test.png](https://img.haomeiwen.com/i11138240/859f6c600d26784a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
- 测试网络
我们已经用训练数据集训练了两遍网络,但是我们还需要测试网络是否学习到了分类特征。
第一步,创建一个迭代器,并获取测试数据集的数据:
# test
dateiter=iter(testloader)
image,label=dateiter.next()
# print image
imshow(torchvision.utils.make_grid(image))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
输出结果:
![](https://img.haomeiwen.com/i11138240/4a67772aabfbf209.png)
GroundTruth: cat ship ship plane
第二步,加载前面保存的模型,并测试一组数据分类是否正确:
net = Net()
net.load_state_dict(torch.load(PATH))
# output & prediction
output = net(image)
_, predict = torch.max(output, 1)
print('Predicted: ', ' '.join('%5s' % classes[predict[j]]
for j in range(4)))
输出结果:
Predicted: bird ship ship plane
对比可以发现,4组数据有三组正确分类。
进一步分析模型对各类型物体分类的准确性:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
image, labels = data
outputs = net(image)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
输出结果:
Accuracy of plane : 74 %
Accuracy of car : 75 %
Accuracy of bird : 43 %
Accuracy of cat : 27 %
Accuracy of deer : 42 %
Accuracy of dog : 33 %
Accuracy of frog : 70 %
Accuracy of horse : 62 %
Accuracy of ship : 75 %
Accuracy of truck : 43 %
在GPU上训练
首先要判断设备是否支持CUDA:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
然后将之前的程序做一点改动:
net.to(device)
inputs, labels = data[0].to(device), data[1].to(device)
这部分程序我并没有在电脑上跑,因为电脑性能的原因,我没有安装GPU版本的libtorch和pytorch,目前所有的程序都是在CPU上运行的。希望大家看完觉得写得还行的,支援我个两三毛钱,助我早日换个电脑。
结语
本节代码可以从github上下载,github上提供了cpp和python两个版本的入门程序,仅供大家参考。
C++版本程序需要的数据可以从百度云下载,提取码:vxxn
网友评论