美文网首页
C++并发开发(1)- 生产者消费者模型

C++并发开发(1)- 生产者消费者模型

作者: Savior2016 | 来源:发表于2017-12-11 15:48 被阅读140次

    打算先看一下生产者消费者模型,在进行从头到尾系统的学习。
    参考文章:C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)

    1 单生产者-单消费者模型


    源码及解析如下:

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 10; // Item buffer size.
    static const int kItemsToProduce  = 1000;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
        size_t read_position; // 消费者读取产品位置.
        size_t write_position; // 生产者写入产品位置.
        std::mutex mtx; // 互斥量,保护产品缓冲区
        std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
        std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
    } gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);//可以简单的理解为开启线程锁
        while(((ir->write_position + 1) % kItemRepositorySize)== ir->read_position) 
        { // item buffer is full, just wait here.这时说明仓库满了,也就是写入的指针已经追着读取的指针追到一圈了
            std::cout << "Producer is waiting for an empty slot...\n";
            (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
        }
    
        (ir->item_buffer)[ir->write_position] = item; // 在生产者指针位置写入产品.
        (ir->write_position)++; // 写入位置后移.
    
        if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
        lock.unlock(); // 解锁.
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...\n";
            (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
        }
    
        data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
        (ir->read_position)++; // 读取位置后移
    
        if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
        lock.unlock(); // 解锁.
    
        return data; // 返回产品.
    }
    
    
    void ProducerTask() // 生产者任务
    {
        for (int i = 1; i <= kItemsToProduce; ++i) {
            // sleep(1);
            std::cout << "Produce the " << i << "^th item..." << std::endl;
            ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
        }
    }
    
    void ConsumerTask() // 消费者任务
    {
        static int cnt = 0;
        while(1) {
            sleep(1);
            int item = ConsumeItem(&gItemRepository); // 消费一个产品.
            std::cout << "Consume the " << item << "^th item" << std::endl;
            if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
        }
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0; // 初始化产品写入位置.
        ir->read_position = 0; // 初始化产品读取位置.
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer(ProducerTask); // 创建生产者线程.
        std::thread consumer(ConsumerTask); // 创建消费之线程.
        producer.join();
        consumer.join();
    }
    

    2 多生产者-单消费者模型

    这个可能近期会用到,所以记录一下。例如数据库操作,可以把要存储的数据缓存下来,这样可以提高数据采集速度,缓存下来的数据可以采用事务处理批量操作,又提高了数据库存储的速度。多个线程采集数据,单个线程进行数据库存储。

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 4; // Item buffer size.
    static const int kItemsToProduce  = 10;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize];
        size_t read_position;
        size_t write_position;
        size_t item_counter;
        std::mutex mtx;
        std::mutex item_counter_mtx;
        std::condition_variable repo_not_full;
        std::condition_variable repo_not_empty;
    } gItemRepository;
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);
        while(((ir->write_position + 1) % kItemRepositorySize)
            == ir->read_position) { // item buffer is full, just wait here.
            std::cout << "Producer is waiting for an empty slot...\n";
            (ir->repo_not_full).wait(lock);
        }
    
        (ir->item_buffer)[ir->write_position] = item;
        (ir->write_position)++;
    
        if (ir->write_position == kItemRepositorySize)
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all();
        lock.unlock();
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...\n";
            (ir->repo_not_empty).wait(lock);
        }
    
        data = (ir->item_buffer)[ir->read_position];
        (ir->read_position)++;
    
        if (ir->read_position >= kItemRepositorySize)
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all();
        lock.unlock();
    
        return data;
    }
    
    void ProducerTask()
    {
        bool ready_to_exit = false;
        while(1) {
            sleep(1);
            std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);//区别是这里加了个锁
            if (gItemRepository.item_counter < kItemsToProduce) {
                ++(gItemRepository.item_counter);
                ProduceItem(&gItemRepository, gItemRepository.item_counter);
                std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is producing the " << gItemRepository.item_counter
                    << "^th item" << std::endl;
            } else ready_to_exit = true;
            lock.unlock();
            if (ready_to_exit == true) break;
        }
        std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void ConsumerTask()
    {
        static int item_consumed = 0;
        while(1) {
            sleep(1);
            ++item_consumed;
            if (item_consumed <= kItemsToProduce) {
                int item = ConsumeItem(&gItemRepository);
                std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is consuming the " << item << "^th item" << std::endl;
            } else break;
        }
        std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0;
        ir->read_position = 0;
        ir->item_counter = 0;
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer1(ProducerTask);
        std::thread producer2(ProducerTask);
        std::thread producer3(ProducerTask);
        std::thread producer4(ProducerTask);
        std::thread consumer(ConsumerTask);
    
        producer1.join();
        producer2.join();
        producer3.join();
        producer4.join();
        consumer.join();
    
    

    相关文章

      网友评论

          本文标题:C++并发开发(1)- 生产者消费者模型

          本文链接:https://www.haomeiwen.com/subject/zipiixtx.html