美文网首页
第八课 顺序最小优化算法

第八课 顺序最小优化算法

作者: yz_wang | 来源:发表于2016-12-12 19:27 被阅读0次

    笔记:http://blog.csdn.net/Andrewseu/article/details/48443633
    参考:https://zhuanlan.zhihu.com/p/21932911

    要点:

    1. 对于线性不可分或个别异常点SVM提出的优化方案

    • 软边界
    • 核函数。基本思想是:将原本的低维特征空间映射到一个更高维的特征空间,从而使得数据集线性可分。
      </br>
      映射到高维
      上图所用的核函数
      常用核函数:

      核函数怎么应用?
    原始优化模型通过拉格朗日对偶

    注意到公式红色部分,表示两个xi和xj做内积,要应用核函数,我们只需要将这个部分替换为对应的核函数即可:


    </br></br>

    2. 顺序最小优化算法SMO sequential minimal optimization

    SMO算法就是为了高效计算上述优化模型而提出的。其是由坐标上升算法衍生而来。
    所谓坐标上升算法,就是指:对于含有多个变量的优化问题:每次只调整一个变量,而保证其他变量不变,来对模型进行优化,直到收敛。
    SMO的思想类似,由于约束条件

    \sum_{i=1}^{m}{\alpha _iy^{(i)}} \sum_{i=1}^{m}{\alpha _iy^{(i)}} 的存在,如果按照坐标上升算法,每次只修改一个a的值,是不可行的(因为a的值完全取决于剩下a的m-1个值)。所以每次至少改变一对a的值。

    3. SVM应用实例

    参考https://zhuanlan.zhihu.com/p/21932911

    相关文章

      网友评论

          本文标题:第八课 顺序最小优化算法

          本文链接:https://www.haomeiwen.com/subject/ziypmttx.html