HADOOP生态圈知识概述

作者: 金光闪闪耶 | 来源:发表于2019-05-21 15:51 被阅读1次

    . hadoop 生态概况

    Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。具有可靠、高效、可伸缩的特点。

    Hadoop的核心是YARN,HDFS和Mapreduce

    下图是hadoop生态系统,集成spark生态圈。在未来一段时间内,hadoop将于spark共存,hadoop与spark都能部署在yarn、mesos的资源管理系统之上。

    1、HDFS(Hadoop分布式文件系统)

    源自于Google的GFS论文,发表于2003年10月,HDFS是GFS克隆版。

    HDFS是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。

    HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。

    它提供了一次写入多次读取的机制,数据以块的形式,同时分布在集群不同物理机器上。

    在这里还是要推荐下我自己建的大数据学习交流群:957205962,群里都是学大数据开发的,如果你正在学大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。

    2、Mapreduce(分布式计算框架)

    源自于google的MapReduce论文,发表于2004年12月,HadoopMapReduce是google MapReduce 克隆版。

    MapReduce是一种分布式计算模型,用以进行大数据量的计算。它屏蔽了分布式计算框架细节,将计算抽象成map和reduce两部分,

    其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。

    MapReduce非常适合在大量计算机组成的分布式并行环境里进行数据处理。

    3. HBASE(分布式列存数据库)

    源自Google的Bigtable论文,发表于2006年11月,HBase是GoogleBigtable克隆版。

    HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。

    HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。

    HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。

    4. Zookeeper(分布式协作服务)

    源自Google的Chubby论文,发表于2006年11月,Zookeeper是Chubby克隆版

    解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等

    Hadoop的许多组件依赖于Zookeeper,它运行在计算机集群上面,用于管理Hadoop操作。

    5. HIVE(数据仓库)

    由facebook开源,最初用于解决海量结构化的日志数据统计问题。

    Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。

    HQL用于运行存储在Hadoop上的查询语句,Hive让不熟悉MapReduce开发人员也能编写数据查询语句,然后这些语句被翻译为Hadoop上面的MapReduce任务。

    6.Pig(ad-hoc脚本)

    由yahoo!开源,设计动机是提供一种基于MapReduce的ad-hoc(计算在query时发生)数据分析工具

    Pig定义了一种数据流语言—PigLatin,它是MapReduce编程的复杂性的抽象,Pig平台包括运行环境和用于分析Hadoop数据集的脚本语言(Pig Latin)。

    其编译器将Pig Latin翻译成MapReduce程序序列将脚本转换为MapReduce任务在Hadoop上执行。通常用于进行离线分析。

    7.Sqoop(数据ETL/同步工具)

    Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。

    Sqoop利用数据库技术描述数据架构,用于在关系数据库、数据仓库和Hadoop之间转移数据。

    8.Flume(日志收集工具)

    Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。

    它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。

    同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。

    总的来说,Flume是一个可扩展、适合复杂环境的海量日志收集系统。当然也可以用于收集其他类型数据

    9. Oozie(工作流调度器)

    Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。

    Oozie工作流是放置在控制依赖DAG(有向无环图 DirectAcyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。

    Oozie使用hPDL(一种XML流程定义语言)来描述这个图。

    10. Yarn(分布式资源管理器)

    YARN是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的。

    yarn是下一代 Hadoop 计算平台,yarn是一个通用的运行时框架,用户可以编写自己的计算框架,在该运行环境中运行。

    用于自己编写的框架作为客户端的一个lib,在运用提交作业时打包即可。该框架为提供了以下几个组件:

    资源管理:包括应用程序管理和机器资源管理

    资源双层调度

    容错性:各个组件均有考虑容错性

    扩展性:可扩展到上万个节点

    内存DAG计算模型)

    Spark是一个Apache项目,它被标榜为“快如闪电的集群计算”。它拥有一个繁荣的开源社区,并且是目前最活跃的Apache项目。

    最早Spark是UC BerkeleyAMP lab所开源的类Hadoop MapReduce的通用的并行计算框架。

    Spark提供了一个更快、更通用的数据处理平台。和Hadoop相比,Spark可以让你的程序在内存中运行时速度提升100倍,或者在磁盘上运行时速度提升10倍

    12. Kafka(分布式消息队列)

    Kafka是Linkedin于2010年12月份开源的消息系统,它主要用于处理活跃的流式数据。

    活跃的流式数据在web网站应用中非常常见,这些数据包括网站的pv、用户访问了什么内容,搜索了什么内容等。

    这些数据通常以日志的形式记录下来,然后每隔一段时间进行一次统计处理。

    13.Ambari(安装部署配置管理工具)

    Apache Ambari 的作用来说,就是创建、管理、监视 Hadoop 的集群,是为了让 Hadoop 以及相关的大数据软件更容易使用的一个web工具。

    在这里还是要推荐下我自己建的大数据学习交流群:957205962,群里都是学大数据开发的,如果你正在学大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。

    相关文章

      网友评论

        本文标题:HADOOP生态圈知识概述

        本文链接:https://www.haomeiwen.com/subject/zjjjzqtx.html