模型预测控制求解
模型
2018-10-17_150054.jpg
#include "MPC.h"
#include <math.h>
#include <cppad/cppad.hpp>
#include <cppad/ipopt/solve.hpp>
#include "Eigen-3.3/Eigen/Core"
#include "Eigen-3.3/Eigen/QR"
#include "matplotlibcpp.h"
#include <time.h>
namespace plt = matplotlibcpp;
using CppAD::AD;
// We set the number of timesteps to 25
// and the timestep evaluation frequency or evaluation
// period to 0.05.
size_t N = 10;//**预测步长**
double dt = 0.1;//**采样时间**
// This value assumes the model presented in the classroom is used.
//
// It was obtained by measuring the radius formed by running the vehicle in the
// simulator around in a circle with a constant steering angle and velocity on a
// flat terrain.
//
// Lf was tuned until the the radius formed by the simulating the model
// presented in the classroom matched the previous radius.
//
// This is the length from front to CoG that has a similar radius.
const double Lf = 2.67;
// Both the reference cross track and orientation errors are 0.
// The reference velocity is set to 40 mph.
double ref_v = 40;
// The solver takes all the state variables and actuator
// variables in a singular vector. Thus, we should to establish
// when one variable starts and another ends to make our lifes easier.**变量个数索引**
size_t x_start = 0;
size_t y_start = x_start + N;
size_t psi_start = y_start + N;
size_t v_start = psi_start + N;
size_t cte_start = v_start + N;
size_t epsi_start = cte_start + N;
size_t delta_start = epsi_start + N;
size_t a_start = delta_start + N - 1;
class FG_eval {
public:
Eigen::VectorXd coeffs;
// Coefficients of the fitted polynomial.
FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
// `fg` is a vector containing the cost and constraints.
// `vars` is a vector containing the variable values (state & actuators).
void operator()(ADvector& fg, const ADvector& vars) {
// The cost is stored is the first element of `fg`.
// Any additions to the cost should be added to `fg[0]`.
fg[0] = 0;
// The part of the cost based on the reference state.**目标函数 误差部分**
for (int t = 0; t < N; t++) {
fg[0] += CppAD::pow(vars[cte_start + t], 2);
fg[0] += CppAD::pow(vars[epsi_start + t], 2);
fg[0] += CppAD::pow(vars[v_start + t] - ref_v, 2);
}
// Minimize the use of actuators.**目标函数 输入部分**
for (int t = 0; t < N - 1; t++) {
fg[0] += CppAD::pow(vars[delta_start + t], 2);
fg[0] += CppAD::pow(vars[a_start + t], 2);
}
// Minimize the value gap between sequential actuations.**目标函数 输入跳动部分**
for (int t = 0; t < N - 2; t++) {
fg[0] += CppAD::pow(vars[delta_start + t + 1] - vars[delta_start + t], 2);
fg[0] += CppAD::pow(vars[a_start + t + 1] - vars[a_start + t], 2);
}
//
// Setup Constraints
//
// NOTE: In this section you'll setup the model constraints.**10个步长的等式约束**
// Initial constraints
//
// We add 1 to each of the starting indices due to cost being located at
// index 0 of `fg`.
// This bumps up the position of all the other values.
fg[1 + x_start] = vars[x_start];
fg[1 + y_start] = vars[y_start];
fg[1 + psi_start] = vars[psi_start];
fg[1 + v_start] = vars[v_start];
fg[1 + cte_start] = vars[cte_start];
fg[1 + epsi_start] = vars[epsi_start];
// The rest of the constraints
for (int t = 1; t < N; t++) {
// The state at time t+1 .
AD<double> x1 = vars[x_start + t];
AD<double> y1 = vars[y_start + t];
AD<double> psi1 = vars[psi_start + t];
AD<double> v1 = vars[v_start + t];
AD<double> cte1 = vars[cte_start + t];
AD<double> epsi1 = vars[epsi_start + t];
// The state at time t.
AD<double> x0 = vars[x_start + t - 1];
AD<double> y0 = vars[y_start + t - 1];
AD<double> psi0 = vars[psi_start + t - 1];
AD<double> v0 = vars[v_start + t - 1];
AD<double> cte0 = vars[cte_start + t - 1];
AD<double> epsi0 = vars[epsi_start + t - 1];
// Only consider the actuation at time t.
AD<double> delta0 = vars[delta_start + t - 1];
AD<double> a0 = vars[a_start + t - 1];
AD<double> f0 = coeffs[0] + coeffs[1] * x0;
AD<double> psides0 = CppAD::atan(coeffs[1]);
// Here's `x` to get you started.
// The idea here is to constraint this value to be 0.
//
// Recall the equations for the model:
// x_[t+1] = x[t] + v[t] * cos(psi[t]) * dt
// y_[t+1] = y[t] + v[t] * sin(psi[t]) * dt
// psi_[t+1] = psi[t] + v[t] / Lf * delta[t] * dt
// v_[t+1] = v[t] + a[t] * dt
// cte[t+1] = f(x[t]) - y[t] + v[t] * sin(epsi[t]) * dt
// epsi[t+1] = psi[t] - psides[t] + v[t] * delta[t] / Lf * dt
fg[1 + x_start + t] = x1 - (x0 + v0 * CppAD::cos(psi0) * dt);
fg[1 + y_start + t] = y1 - (y0 + v0 * CppAD::sin(psi0) * dt);
fg[1 + psi_start + t] = psi1 - (psi0 + v0 * delta0 / Lf * dt);
fg[1 + v_start + t] = v1 - (v0 + a0 * dt);
fg[1 + cte_start + t] =
cte1 - ((f0 - y0) + (v0 * CppAD::sin(epsi0) * dt));
fg[1 + epsi_start + t] =
epsi1 - ((psi0 - psides0) + v0 * delta0 / Lf * dt);
}
}
};
//
// MPC class definition
//
MPC::MPC() {}
MPC::~MPC() {}
vector<double> MPC::Solve(Eigen::VectorXd x0, Eigen::VectorXd coeffs) {
size_t i;
typedef CPPAD_TESTVECTOR(double) Dvector;
double x = x0[0];
double y = x0[1];
double psi = x0[2];
double v = x0[3];
double cte = x0[4];
double epsi = x0[5];
// number of independent variables
// N timesteps == N - 1 actuations**变量数量**
size_t n_vars = N * 6 + (N - 1) * 2;
// Number of constraints
size_t n_constraints = N * 6;
// Initial value of the independent variables.
// Should be 0 except for the initial values.
Dvector vars(n_vars);
for (int i = 0; i < n_vars; i++) {
vars[i] = 0.0;
}
// Set the initial variable values**初始化变量及变量上下限**
vars[x_start] = x;
vars[y_start] = y;
vars[psi_start] = psi;
vars[v_start] = v;
vars[cte_start] = cte;
vars[epsi_start] = epsi;
// Lower and upper limits for x
Dvector vars_lowerbound(n_vars);
Dvector vars_upperbound(n_vars);
// Set all non-actuators upper and lowerlimits
// to the max negative and positive values.
for (int i = 0; i < delta_start; i++) {
vars_lowerbound[i] = -1.0e19;
vars_upperbound[i] = 1.0e19;
}
// The upper and lower limits of delta are set to -25 and 25
// degrees (values in radians).
// NOTE: Feel free to change this to something else.
for (int i = delta_start; i < a_start; i++) {
vars_lowerbound[i] = -0.436332;
vars_upperbound[i] = 0.436332;
}
// Acceleration/decceleration upper and lower limits.
// NOTE: Feel free to change this to something else.
for (int i = a_start; i < n_vars; i++) {
vars_lowerbound[i] = -1.0;
vars_upperbound[i] = 1.0;
}
// Lower and upper limits for constraints
// All of these should be 0 except the initial
// state indices.**都是等式约束,上下限都设置为0,初始值的约束**
Dvector constraints_lowerbound(n_constraints);
Dvector constraints_upperbound(n_constraints);
for (int i = 0; i < n_constraints; i++) {
constraints_lowerbound[i] = 0;
constraints_upperbound[i] = 0;
}
constraints_lowerbound[x_start] = x;
constraints_lowerbound[y_start] = y;
constraints_lowerbound[psi_start] = psi;
constraints_lowerbound[v_start] = v;
constraints_lowerbound[cte_start] = cte;
constraints_lowerbound[epsi_start] = epsi;
constraints_upperbound[x_start] = x;
constraints_upperbound[y_start] = y;
constraints_upperbound[psi_start] = psi;
constraints_upperbound[v_start] = v;
constraints_upperbound[cte_start] = cte;
constraints_upperbound[epsi_start] = epsi;
// Object that computes objective and constraints
FG_eval fg_eval(coeffs);
// options
std::string options;
options += "Integer print_level 0\n";
options += "Sparse true forward\n";
options += "Sparse true reverse\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
constraints_upperbound, fg_eval, solution);
//
// Check some of the solution values
//
bool ok = true;
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
auto cost = solution.obj_value;
std::cout << "Cost " << cost << std::endl;
return {solution.x[x_start + 1], solution.x[y_start + 1],
solution.x[psi_start + 1], solution.x[v_start + 1],
solution.x[cte_start + 1], solution.x[epsi_start + 1],
solution.x[delta_start], solution.x[a_start]};
}
//
// Helper functions to fit and evaluate polynomials.
//
// Evaluate a polynomial.
double polyeval(Eigen::VectorXd coeffs, double x) {
double result = 0.0;
for (int i = 0; i < coeffs.size(); i++) {
result += coeffs[i] * pow(x, i);
}
return result;
}
// Fit a polynomial.
// Adapted from
// https://github.com/JuliaMath/Polynomials.jl/blob/master/src/Polynomials.jl#L676-L716
Eigen::VectorXd polyfit(Eigen::VectorXd xvals, Eigen::VectorXd yvals,
int order) {
assert(xvals.size() == yvals.size());
assert(order >= 1 && order <= xvals.size() - 1);
Eigen::MatrixXd A(xvals.size(), order + 1);
for (int i = 0; i < xvals.size(); i++) {
A(i, 0) = 1.0;
}
for (int j = 0; j < xvals.size(); j++) {
for (int i = 0; i < order; i++) {
A(j, i + 1) = A(j, i) * xvals(j);
}
}
auto Q = A.householderQr();
auto result = Q.solve(yvals);
return result;
}
int main() {
MPC mpc;
int iters = 50; //**仿真时长**
Eigen::VectorXd ptsx(2);
Eigen::VectorXd ptsy(2);
ptsx << -100, 100;
ptsy << -1, -1;
// The polynomial is fitted to a straight line so a polynomial with
// order 1 is sufficient.
auto coeffs = polyfit(ptsx, ptsy, 1);//**拟合跟踪轨迹**
// NOTE: free feel to play around with these,**初始值**
double x = -1;
double y = 10;
double psi = 0;
double v = 10;
// The cross track error is calculated by evaluating at polynomial at x, f(x)
// and subtracting y.
double cte = polyeval(coeffs, x) - y;
// Due to the sign starting at 0, the orientation error is -f'(x).
// derivative of coeffs[0] + coeffs[1] * x -> coeffs[1]
double epsi = psi - atan(coeffs[1]);
//**计算非线性规划求解时间**
clock_t start, finish;
double duration;
Eigen::VectorXd state(6);
state << x, y, psi, v, cte, epsi;
std::vector<double> x_vals = {state[0]};
std::vector<double> y_vals = {state[1]};
std::vector<double> psi_vals = {state[2]};
std::vector<double> v_vals = {state[3]};
std::vector<double> cte_vals = {state[4]};
std::vector<double> epsi_vals = {state[5]};
std::vector<double> delta_vals = {};
std::vector<double> a_vals = {};
for (size_t i = 0; i < iters; i++) {
std::cout << "Iteration " << i << std::endl;
start = clock();
auto vars = mpc.Solve(state, coeffs);
finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
std::cout << "TIME = " << duration << std::endl;
//**保存预测步长范围状态及输入,用于绘图**
x_vals.push_back(vars[0]);
y_vals.push_back(vars[1]);
psi_vals.push_back(vars[2]);
v_vals.push_back(vars[3]);
cte_vals.push_back(vars[4]);
epsi_vals.push_back(vars[5]);
delta_vals.push_back(vars[6]);
a_vals.push_back(vars[7]);
state << vars[0], vars[1], vars[2], vars[3], vars[4], vars[5];
std::cout << "x = " << vars[0] << std::endl;
std::cout << "y = " << vars[1] << std::endl;
std::cout << "psi = " << vars[2] << std::endl;
std::cout << "v = " << vars[3] << std::endl;
std::cout << "cte = " << vars[4] << std::endl;
std::cout << "epsi = " << vars[5] << std::endl;
std::cout << "delta = " << vars[6] << std::endl;
std::cout << "a = " << vars[7] << std::endl;
std::cout << std::endl;
}
// Plot values
// NOTE: feel free to play around with this.
// It's useful for debugging!
plt::subplot(3, 1, 1);
plt::title("CTE");
plt::plot(cte_vals);
plt::subplot(3, 1, 2);
plt::title("Delta (Radians)");
plt::plot(delta_vals);
plt::subplot(3, 1, 3);
plt::title("Velocity");
plt::plot(v_vals);
plt::show();
}
网友评论