数据分析 2
NumPy: 数组和⽮矢量量计算
NumPy之于数值计算特别重要的原因之⼀一,是因为它可以⾼高效处理理⼤大数组的数据。
NumPy是在⼀一个连续的内存块中存储数据,独⽴立于其他Python内置对象。NumPy的C语⾔言编
写的算法库可以操作内存,⽽而不不必进⾏行行类型检查或其它前期⼯工作。⽐比起Python的内置序列列,
NumPy数组使⽤用的内存更更少。
NumPy可以在整个数组上执⾏行行复杂的计算,⽽而不不需要Python的for循环。
性能对⽐比
基于NumPy的算法要⽐比纯Python快10到100倍(甚⾄至更更快),并且使⽤用的内存更更少。
In [7]: import numpy as np
In [8]: %timeit my_arr = np.arange(1000000)
In [9]: %timeit my_list = list(range(1000000))
NumPy的ndarray:⼀一种多维数组对象
NumPy最重要的⼀一个特点就是其N维数组对象(即ndarray), 该对象是⼀一个快速⽽而灵活的⼤大
数据集容器器。你可以利利⽤用这种数组对整块数据执⾏行行⼀一些数学运算,其语法跟标量量元素之间的运
算⼀一样。
In [12]: import numpy as np
In [13]: data = np.random.randn(2, 3)
In [14]: data
Out[14]:
array([[-0.2047, 0.4789, -0.5194],
[-0.5557, 1.9658, 1.3934]])
In [15]: data * 10
Out[15]:
array([[ -2.0471, 4.7894, -5.1944],
[ -5.5573, 19.6578, 13.9341]])
In [16]: data + data
Out[16]:
array([[-0.4094, 0.9579, -1.0389],
[-1.1115, 3.9316, 2.7868]])
ndarray是⼀一个通⽤用的同构数据多维容器器,所有元素必须是相同类型的
取维度大小
data.shape
取数据数据类型
data.dtype
创建ndarray
In [19]: data1 = [6, 7.5, 8, 0, 1]
In [20]: arr1 = np.array(data1)
In [21]: arr1
Out[21]: array([ 6. , 7.5, 8. , 0. , 1. ])
嵌套序列列(⽐比如由⼀一组等⻓长列列表组成的列列表)将会被转换为一个多维数组
In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
In [23]: arr2 = np.array(data2)
In [24]: arr2
Out[24]:
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
取维度
arr2.ndim
arr2.shape
arr2.dtype
zeros和ones分别可以创建指定⻓长度或形状的全0或全1数组。empty可以创建一个没有任何具
体值的数组
In [29]: np.zeros(10)
Out[29]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [30]: np.zeros((3, 6))
Out[30]:
array([[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.]])
In [31]: np.empty((2, 3, 2))
np.ones(10)
np.empty返回的都是⼀一些未初始化的垃圾值
In [32]: np.arange(15)
Out[32]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
ndarray的数据类型
In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)
In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)
In [35]: arr1.dtype
Out[35]: dtype('float64')
In [36]: arr2.dtype
Out[36]: dtype('int32')
astype⽅方法明确地将⼀一个数组从⼀一个dtype转换成另⼀一个dtype
In [37]: arr = np.array([1, 2, 3, 4, 5])
In [38]: arr.dtype
Out[38]: dtype('int64')
In [39]: float_arr = arr.astype(np.float64)
In [40]: float_arr.dtype
Out[40]: dtype('float64')
将浮点数转换成整数,则⼩小数部分将会被截取删除
In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [42]: arr
Out[42]: array([ 3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2, 0, 12, 10], dtype=int32)
调⽤用astype总会创建⼀一个新的数组(⼀一个数据的备份)
NumPy数组的运算
不不⽤用编写循环即可对数据执⾏行行批量量运算。NumPy⽤用户称其为⽮矢量量化(vectorization)。⼤大⼩小相
等的数组之间的任何算术运算都会将运算应⽤用到元素级
In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
In [52]: arr
Out[52]:
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
In [53]: arr * arr
Out[53]:
array([[ 1., 4., 9.],
[ 16., 25., 36.]])
In [54]: arr - arr
Out[54]:
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
数组与标量量的算术运算会将标量量值传播到各个元素
In [55]: 1 / arr
Out[55]:
array([[ 1. , 0.5 , 0.3333],
[ 0.25 , 0.2 , 0.1667]])
In [56]: arr * 0.5
⼤大⼩小相同的数组之间的⽐比较会⽣生成布尔值数组
In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
In [58]: arr2
Out[58]:
array([[ 0., 4., 1.],
[ 7., 2., 12.]])
In [59]: arr2 > arr
Out[59]:
array([[False, True, False],
[ True, False, True]], dtype=bool)
基本的索引和切⽚片
In [60]: arr = np.arange(10)
In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [62]: arr[5]
Out[62]: 5
In [63]: arr[5:8]
Out[63]: array([5, 6, 7])
In [64]: arr[5:8] = 12
In [65]: arr
Out[65]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
In [66]: arr_slice = arr[5:8]
In [67]: arr_slice
Out[67]: array([12, 12, 12])
In [68]: arr_slice[1] = 12345
In [69]: arr
Out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
9])
切⽚片[ : ]会给数组中的所有值赋值
In [70]: arr_slice[:] = 64
In [71]: arr
Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
ndarray切⽚片的⼀一份副本⽽而⾮非视图,就需要明确地进⾏行行复制操作,例例如arr[5:8].copy()
In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [73]: arr2d[2]
Out[73]: array([7, 8, 9])
两种方式一样
In [74]: arr2d[0][2]
Out[74]: 3
In [75]: arr2d[0, 2]
Out[75]: 3
多维数组中,如果省略略了了后⾯面的索引,则返回对象会是⼀一个维度低⼀一点的ndarray
In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
In [77]: arr3d
Out[77]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
arr3d.ndim
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
[4, 5, 6]])
arr3d[0].ndim
标量量值和数组都可以被赋值给arr3d[0]
In [79]: old_values = arr3d[0].copy()
In [80]: arr3d[0] = 42
In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
[42, 42, 42]],
[[ 7, 8, 9],
[10, 11, 12]]])
In [82]: arr3d[0] = old_values
In [83]: arr3d
Out[83]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])
切⽚片索引
In [90]: arr2d
Out[90]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [91]: arr2d[:2]
Out[91]:
array([[1, 2, 3],
[4, 5, 6]])
⼀一次传⼊入多个切⽚片
In [92]: arr2d[:2, 1:]
Out[92]:
array([[2, 3],
[5, 6]])
将整数索引和切⽚片混合
选取第⼆二⾏行行的前两列列
In [93]: arr2d[1, :2]
Out[93]: array([4, 5])
选择第三列列的前两行行
In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])
“只有冒号”表示选取整个轴
In [95]: arr2d[:, :1]
Out[95]:
array([[1],
[4],
[7]])
In [96]: arr2d[:2, 1:] = 0
In [97]: arr2d
Out[97]:
array([[1, 0, 0],
[4, 0, 0],
[7, 8, 9]])
布尔型索引
假设我们有⼀一个⽤用于存储数据的数组以及⼀一个存储姓名的数组(含有重复项)
In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [99]: data = np.random.randn(7, 4)
In [100]: names
Out[100]:
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
dtype='<U4')
In [101]: data
Out[101]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 1.669 , -0.4386, -0.5397, 0.477 ],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]])
In [102]: names == 'Bob'
Out[102]: array([ True, False, False, True, False, False, False], dtype=bool)
In [103]: data[names == 'Bob']
Out[103]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.669 , -0.4386, -0.5397, 0.477 ]])
In [104]: data[names == 'Bob', 2:]
Out[104]:
array([[ 0.769 , 1.2464],
[-0.5397, 0.477 ]])
In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464, 0.477 ])
要选择除”bob”以外的其他值,既可以使⽤用不不等于符号(!=),也可以通过~对条件进⾏行行否定
In [106]: names != 'Bob'
Out[106]: array([False, True, True, False, True, True, True], dtype=bool)
In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]])
In [110]: mask = (names == 'Bob') | (names == 'Will')
In [111]: mask
Out[111]: array([ True, False, True, True, True, False, False], dtype=bool)
In [112]: data[mask]
Out[112]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 1.669 , -0.4386, -0.5397, 0.477 ],
[ 3.2489, -1.0212, -0.5771, 0.1241]])
In [113]: data[data < 0] = 0
In [114]: data
Out[114]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.0072, 0. , 0.275 , 0.2289],
[ 1.3529, 0.8864, 0. , 0. ],
[ 1.669 , 0. , 0. , 0.477 ],
[ 3.2489, 0. , 0. , 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[ 0. , 0. , 0. , 0. ]])
In [115]: data[names != 'Joe'] = 7
In [116]: data
Out[116]:
array([[ 7. , 7. , 7. , 7. ],
[ 1.0072, 0. , 0.275 , 0.2289],
[ 7. , 7. , 7. , 7. ],
[ 7. , 7. , 7. , 7. ],
[ 7. , 7. , 7. , 7. ],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[ 0. , 0. , 0. , 0. ]])
花式索引
花式索引(Fancy indexing)是一个NumPy术语,它指的是利利⽤用整数数组进⾏行行索引
In [117]: arr = np.empty((8, 4))
In [118]: for i in range(8):
.....: arr[i] = i
In [119]: arr
Out[119]:
array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.],
[ 2., 2., 2., 2.],
[ 3., 3., 3., 3.],
[ 4., 4., 4., 4.],
[ 5., 5., 5., 5.],
[ 6., 6., 6., 6.],
[ 7., 7., 7., 7.]])
为了了以特定顺序选取⾏行行⼦子集,只需传⼊入⼀一个⽤用于指定顺序的整数列列表或ndarray即可
In [120]: arr[[4, 3, 0, 6]]
Out[120]:
array([[ 4., 4., 4., 4.],
[ 3., 3., 3., 3.],
[ 0., 0., 0., 0.],
[ 6., 6., 6., 6.]])
使⽤用负数索引将会从末尾开始选取⾏行行
In [121]: arr[[-3, -5, -7]]
Out[121]:
array([[ 5., 5., 5., 5.],
[ 3., 3., 3., 3.],
[ 1., 1., 1., 1.]])
⼀一次传⼊入多个索引数组会有⼀一点特别。它返回的是⼀一个⼀一维数组,其中的元素对应各个索引元
组
In [122]: arr = np.arange(32).reshape((8, 4))
In [123]: arr
Out[123]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)
In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])
In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]:
array([[ 4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[ 8, 11, 9, 10]])
数组转置和轴对换
转置是重塑的⼀一种特殊形式,它返回的是源数据的视图(不不会进⾏行行任何复制操作)
In [126]: arr = np.arange(15).reshape((3, 5))
In [127]: arr
Out[127]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
In [128]: arr.T
Out[128]:
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
利利⽤用np.dot计算矩阵内积
In [129]: arr = np.random.randn(6, 3)
In [130]: arr
Out[130]:
array([[-0.8608, 0.5601, -1.2659],
[ 0.1198, -1.0635, 0.3329],
[-2.3594, -0.1995, -1.542 ],
[-0.9707, -1.307 , 0.2863],
[ 0.378 , -0.7539, 0.3313],
[ 1.3497, 0.0699, 0.2467]])
In [131]: np.dot(arr.T, arr)
Out[131]:
array([[ 9.2291, 0.9394, 4.948 ],
[ 0.9394, 3.7662, -1.3622],
[ 4.948 , -1.3622, 4.3437]])
对于⾼高维数组,transpose需要得到⼀一个由轴编号组成的元组才能对这些轴进⾏行行转置
In [132]: arr = np.arange(16).reshape((2, 2, 4))
In [133]: arr
Out[133]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [134]: arr.transpose((1, 0, 2))
Out[134]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
In [135]: arr
Out[135]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [136]: arr.swapaxes(1, 2)
Out[136]:
array([[[ 0, 4],
[ 1, 5],
[ 2, 6],
[ 3, 7]],
[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])
arr.swapaxes(0, 1)
通⽤用函数(ufunc):快速的元素级数组函数
In [137]: arr = np.arange(10)
In [138]: arr
Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [139]: np.sqrt(arr)
Out[139]:
array([ 0. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495,
2.6458, 2.8284, 3. ])
In [140]: np.exp(arr)
Out[140]:
array([ 1. , 2.7183, 7.3891, 20.0855, 54.5982,
148.4132, 403.4288, 1096.6332, 2980.958 , 8103.0839])
add或maximum接受2个数组(因此也叫⼆二元(binary)ufunc),并返回⼀一个结果数组
In [141]: x = np.random.randn(8)
In [142]: y = np.random.randn(8)
In [143]: x
Out[143]:
array([-0.0119, 1.0048, 1.3272, -0.9193, -1.5491, 0.0222, 0.7584,
-0.6605])
In [144]: y
Out[144]:
array([ 0.8626, -0.01 , 0.05 , 0.6702, 0.853 , -0.9559, -0.0235,
-2.3042])
In [145]: np.maximum(x, y)
Out[145]:
array([ 0.8626, 1.0048, 1.3272, 0.6702, 0.853 , 0.0222, 0.7584,
-0.6605])
返回浮点数数组的小数和整数部分
In [146]: arr = np.random.randn(7) * 5
In [147]: arr
Out[147]: array([-3.2623, -6.0915, -6.663 , 5.3731, 3.6182, 3.45 ,
5.0077])
In [148]: remainder, whole_part = np.modf(arr)
In [149]: remainder
Out[149]: array([-0.2623, -0.0915, -0.663 , 0.3731,
0.6182, 0.45 , 0.0077])
In [150]: whole_part
Out[150]: array([-3., -6., -6., 5., 3., 3., 5.])
利利用数组进行行数据处理理
⽤用数组表达式代替循环的做法,通常被称为⽮矢量量化。⼀一般来说,⽮矢量量化数组运算要⽐比等价的纯
Python⽅方式快上⼀一两个数量量级(甚⾄至更更多)。
假设我们想要在⼀一组值(⽹网格型)上计算函数sqrt(x2+y2)
np.meshgrid函数接受两个⼀一维数组,并产⽣生两个⼆二维矩阵(对应于两个数组中所有的(x,y)
对)
In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points
In [156]: xs, ys = np.meshgrid(points, points)
In [157]: ys
Out[157]:
array([[-5. , -5. , -5. , ..., -5. , -5. , -5. ],
[-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
[-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
...,
[ 4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97],
[ 4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98],
[ 4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]])
In [158]: z = np.sqrt(xs ** 2 + ys ** 2)
In [159]: z
Out[159]:
array([[ 7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064 ],
[ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569],
[ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
...,
[ 7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428],
[ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
[ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]])
matplotlib创建了了这个⼆二维数组的可视化
In [160]: import matplotlib.pyplot as plt
In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[161]: <matplotlib.colorbar.Colorbar at 0x7f715e3fa630>
In [162]: plt.title("Image plot of for a grid of values")
Out[162]: <matplotlib.text.Text at 0x7f715d2de748>
plt.show()
将条件逻辑表述为数组运算
In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
In [167]: cond = np.array([True, False, True, True, False])
当cond中的值为True时,选取xarr的值,否则从yarr中选取
In [170]: result = np.where(cond, xarr, yarr)
In [171]: result
Out[171]: array([ 1.1, 2.2, 1.3, 1.4, 2.5])
假设有⼀一个由随机数据组成的矩阵,你希望将所有正值替换为2,将所有负值替换为-2
In [172]: arr = np.random.randn(4, 4)
In [173]: arr
Out[173]:
array([[-0.5031, -0.6223, -0.9212, -0.7262],
[ 0.2229, 0.0513, -1.1577, 0.8167],
[ 0.4336, 1.0107, 1.8249, -0.9975],
[ 0.8506, -0.1316, 0.9124, 0.1882]])
In [174]: arr > 0
Out[174]:
array([[False, False, False, False],
[ True, True, False, True],
[ True, True, True, False],
[ True, False, True, True]], dtype=bool)
In [175]: np.where(arr > 0, 2, -2)
Out[175]:
array([[-2, -2, -2, -2],
[ 2, 2, -2, 2],
[ 2, 2, 2, -2],
[ 2, -2, 2, 2]])
用常数2替换arr中所有正的值
In [176]: np.where(arr > 0, 2, arr)
Out[176]:
array([[-0.5031, -0.6223, -0.9212, -0.7262],
[ 2. , 2. , -1.1577, 2. ],
[ 2. , 2. , 2. , -0.9975],
[ 2. , -0.1316, 2. , 2. ]])
数学和统计⽅方法
可以通过数组上的⼀一组数学函数对整个数组或某个轴向的数据进⾏行行统计计算。sum、mean以
及标准差std等聚合计算(aggregation,通常叫做约简(reduction))
In [177]: arr = np.random.randn(5, 4)
In [178]: arr
Out[178]:
array([[ 2.1695, -0.1149, 2.0037, 0.0296],
[ 0.7953, 0.1181, -0.7485, 0.585 ],
[ 0.1527, -1.5657, -0.5625, -0.0327],
[-0.929 , -0.4826, -0.0363, 1.0954],
[ 0.9809, -0.5895, 1.5817, -0.5287]])
In [179]: arr.mean()
Out[179]: 0.19607051119998253
In [180]: np.mean(arr)
Out[180]: 0.19607051119998253
In [181]: arr.sum()
Out[181]: 3.9214102239996507
arr.mean(1)是“计算⾏行行的平均值”,arr.sum(0)是“计算每列列的和”
In [182]: arr.mean(axis=1)
Out[182]: array([ 1.022 , 0.1875, -0.502 , -0.0881, 0.3611])
In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345, 2.2381, 1.1486])
In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])
In [185]: arr.cumsum()
Out[185]: array([ 0, 1, 3, 6, 10, 15, 21, 28])
In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
In [187]: arr
Out[187]:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
所有元素的累积和
In [188]: arr.cumsum(axis=0)
Out[188]:
array([[ 0, 1, 2],
[ 3, 5, 7],
[ 9, 12, 15]])
所有元素的累积积
In [189]: arr.cumprod(axis=1)
Out[189]:
array([[ 0, 0, 0],
[ 3, 12, 60],
[ 6, 42, 336]])
⽤用于布尔型数组的⽅方法
In [190]: arr = np.random.randn(100)
In [191]: (arr > 0).sum()
Out[191]: 42
any⽤用于测试数组中是否存在⼀一个或多个True,⽽而all则检查数组中所有值是否都是True, 这两个
⽅方法也能⽤用于⾮非布尔型数组,所有⾮非0元素将会被当做True
In [192]: bools = np.array([False, False, True, False])
In [193]: bools.any()
Out[193]: True
In [194]: bools.all()
Out[194]: False
排序
In [195]: arr = np.random.randn(6)
In [196]: arr
Out[196]: array([ 0.6095, -0.4938, 1.24 , -0.1357, 1.43 , -0.8469])
In [197]: arr.sort()
In [198]: arr
Out[198]: array([-0.8469, -0.4938, -0.1357, 0.6095, 1.24 , 1.43 ])
多维数组可以在任何⼀一个轴向上进⾏行行排序
In [199]: arr = np.random.randn(5, 3)
In [200]: arr
Out[200]:
array([[ 0.6033, 1.2636, -0.2555],
[-0.4457, 0.4684, -0.9616],
[-1.8245, 0.6254, 1.0229],
[ 1.1074, 0.0909, -0.3501],
[ 0.218 , -0.8948, -1.7415]])
In [201]: arr.sort(1)
In [202]: arr
Out[202]:
array([[-0.2555, 0.6033, 1.2636],
[-0.9616, -0.4457, 0.4684],
[-1.8245, 0.6254, 1.0229],
[-0.3501, 0.0909, 1.1074],
[-1.7415, -0.8948, 0.218 ]])
顶级⽅方法np.sort返回的是数组的已排序副本,⽽而就地排序则会修改数组本身
唯⼀一化以及其它的集合逻辑
找出数组中的唯⼀一值并返回已排序的结果
In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [207]: np.unique(names)
Out[207]:
array(['Bob', 'Joe', 'Will'],
dtype='<U4')
In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])
In [209]: np.unique(ints)
Out[209]: array([1, 2, 3, 4])
函数np.in1d⽤用于测试⼀一个数组中的值在另⼀一个数组中的成员资格,返回⼀一个布尔型数组
In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6])
In [212]: np.in1d(values, [2, 3, 6])
Out[212]: array([ True, False, False, True, True, False, True], dtype=bool)
⽤用于数组的⽂文件输⼊入输出
NumPy的内置⼆二进制格式读写
np.save和np.load是读写磁盘数组数据的两个主要函数。默认情况下,数组是以未压缩的原始
⼆二进制格式保存在扩展名为.npy的⽂文件中的
In [213]: arr = np.arange(10)
In [214]: np.save('some_array', arr)
In [215]: np.load('some_array.npy')
Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
通过np.savez可以将多个数组保存到⼀一个未压缩⽂文件中
In [216]: np.savez('array_archive.npz', a=arr, b=arr)
In [217]: arch = np.load('array_archive.npz')
In [218]: arch['b']
Out[218]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
将数据压缩,可以使⽤用numpy.savez_compressed
In [219]: np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)
线性代数
矩阵乘法的dot函数
In [223]: x = np.array([[1., 2., 3.], [4., 5., 6.]])
In [224]: y = np.array([[6., 23.], [-1, 7], [8, 9]])
In [225]: x
Out[225]:
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
In [226]: y
Out[226]:
array([[ 6., 23.],
[ -1., 7.],
[ 8., 9.]])
In [227]: x.dot(y)
Out[227]:
array([[ 28., 64.],
[ 67., 181.]])
⼀一个⼆二维数组跟⼀一个⼤大⼩小合适的⼀一维数组的矩阵点积运算之后将会得到⼀一个⼀一维数组
In [229]: np.dot(x, np.ones(3))
Out[229]: array([ 6., 15.])
@符也可以⽤用作中缀运算符,进⾏行行矩阵乘法
In [230]: x @ np.ones(3)
Out[230]: array([ 6., 15.])
伪随机数⽣生成
⽤用normal来得到⼀一个标准正态分布的4×4样本数组
In [238]: samples = np.random.normal(size=(4, 4))
In [239]: samples
Out[239]:
array([[ 0.5732, 0.1933, 0.4429, 1.2796],
[ 0.575 , 0.4339, -0.7658, -1.237 ],
[-0.5367, 1.8545, -0.92 , -0.1082],
[ 0.1525, 0.9435, -1.0953, -0.144 ]])
Python内置的random模块则只能⼀一次⽣生成⼀一个样本值。从下⾯面的测试结果中可以看出,如果
需要产⽣生⼤大量量样本值,numpy.random快了了不不⽌止⼀一个数量量级
In [240]: from random import normalvariate
In [241]: N = 1000000
In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
numpy.random的数据⽣生成函数使⽤用了了全局的随机种⼦子。要避免全局状态,你可以使⽤用
numpy.random.RandomState,创建⼀一个与其它隔离的随机数⽣生成器器
In [245]: rng = np.random.RandomState(1234)
In [246]: rng.randn(10)
Out[246]:
array([ 0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596,
-0.6365, 0.0157, -2.2427])
示例例:随机漫步
用np.random模块一次性随机产生1000个“掷硬币”结果(即两个数中任选一个),将其分别设
置为1或-1,然后计算累计和
In [251]: nsteps = 1000
In [252]: draws = np.random.randint(0, 2, size=nsteps)
In [253]: steps = np.where(draws > 0, 1, -1)
In [254]: walk = steps.cumsum()
In [255]: walk.min()
Out[255]: -3
In [256]: walk.max()
Out[256]: 31
我们想要知道本次随机漫步需要多久才能距离初始0点至少10步远(任一方向均可)
In [257]: (np.abs(walk) >= 10).argmax()
Out[257]: 37
网友评论