美文网首页
机器学习实战-逻辑回归

机器学习实战-逻辑回归

作者: 又双叒叕苟了一天 | 来源:发表于2019-06-03 17:34 被阅读0次

对于特征向量\boldsymbol x=[x_1, x_2,...,x_n]^T,我们设置参数\boldsymbol w=[w_1,w_2,...,w_n]^T,通过计算:
sigmoid(b+\boldsymbol x^T\boldsymbol w)
获得一个处于0到1之间的值,当这个值大于0.5时,我们把它判定为类别A,当这个值小于0.5时,我们把它判定为类别B,等于说这个值代表了它是类别A的概率。这里的b是一个偏置项,我们可以把它放入到参数矩阵中,此时\boldsymbol x=[1,x_1,x_2,...,x_n]^T,\boldsymbol w=[w_0,w_1,w_2,...,w_n]^T,其中w_o=b,这时候只需要计算sigmoid(\boldsymbol x^T\boldsymbol w)就可以了。

当然这里输出只是一个标量,只能解决二分类的问题,这时候只需要将参数向量\boldsymbol w变成参数矩阵W,输出就是一个多维的向量了,每个维度代表着一个分类并给出对这个分类的概率,我们选择概率最大的作为我们的分类。这种逻辑回归的方式,可以看做一个全连接的前馈神经网络。

首先构造一个数据集testSet.txt:

-0.017612   14.053064   0
-1.395634   4.662541    1
-0.752157   6.538620    0
-1.322371   7.152853    0
0.423363    11.054677   0
0.406704    7.067335    1
0.667394    12.741452   0
-2.460150   6.866805    1
0.569411    9.548755    0
-0.026632   10.427743   0
0.850433    6.920334    1
1.347183    13.175500   0
1.176813    3.167020    1
-1.781871   9.097953    0
-0.566606   5.749003    1
0.931635    1.589505    1
-0.024205   6.151823    1
-0.036453   2.690988    1
-0.196949   0.444165    1
1.014459    5.754399    1
1.985298    3.230619    1
-1.693453   -0.557540   1
-0.576525   11.778922   0
-0.346811   -1.678730   1
-2.124484   2.672471    1
1.217916    9.597015    0
-0.733928   9.098687    0
-3.642001   -1.618087   1
0.315985    3.523953    1
1.416614    9.619232    0
-0.386323   3.989286    1
0.556921    8.294984    1
1.224863    11.587360   0
-1.347803   -2.406051   1
1.196604    4.951851    1
0.275221    9.543647    0
0.470575    9.332488    0
-1.889567   9.542662    0
-1.527893   12.150579   0
-1.185247   11.309318   0
-0.445678   3.297303    1
1.042222    6.105155    1
-0.618787   10.320986   0
1.152083    0.548467    1
0.828534    2.676045    1
-1.237728   10.549033   0
-0.683565   -2.166125   1
0.229456    5.921938    1
-0.959885   11.555336   0
0.492911    10.993324   0
0.184992    8.721488    0
-0.355715   10.325976   0
-0.397822   8.058397    0
0.824839    13.730343   0
1.507278    5.027866    1
0.099671    6.835839    1
-0.344008   10.717485   0
1.785928    7.718645    1
-0.918801   11.560217   0
-0.364009   4.747300    1
-0.841722   4.119083    1
0.490426    1.960539    1
-0.007194   9.075792    0
0.356107    12.447863   0
0.342578    12.281162   0
-0.810823   -1.466018   1
2.530777    6.476801    1
1.296683    11.607559   0
0.475487    12.040035   0
-0.783277   11.009725   0
0.074798    11.023650   0
-1.337472   0.468339    1
-0.102781   13.763651   0
-0.147324   2.874846    1
0.518389    9.887035    0
1.015399    7.571882    0
-1.658086   -0.027255   1
1.319944    2.171228    1
2.056216    5.019981    1
-0.851633   4.375691    1
-1.510047   6.061992    0
-1.076637   -3.181888   1
1.821096    10.283990   0
3.010150    8.401766    1
-1.099458   1.688274    1
-0.834872   -1.733869   1
-0.846637   3.849075    1
1.400102    12.628781   0
1.752842    5.468166    1
0.078557    0.059736    1
0.089392    -0.715300   1
1.825662    12.693808   0
0.197445    9.744638    0
0.126117    0.922311    1
-0.679797   1.220530    1
0.677983    2.556666    1
0.761349    10.693862   0
-2.168791   0.143632    1
1.388610    9.341997    0
0.317029    14.739025   0

前两个数字是两个特征的值,最后一个数字是分类,属于0或者1。

然后载入数据集:

def loadDataSet():
    dataMat, labelMat = [], []
    with open("./testSet.txt") as fr:
        for line in fr:
            lineArr = line.strip().split()
            dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
            labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
dataMat, labelMat = loadDataSet()
print(dataMat)
# [[1.0, -0.017612, 14.053064], [1.0, -1.395634, 4.662541], [1.0, -0.752157, 6.53862], [1.0, -1.322371, 7.152853],...]
print(labelMat)
# [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,...]

参数通过梯度下降/上升进行更新:

def sigmoid(inX):
    return 1.0 / (1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)  # [size, 3]
    labelMat = mat(classLabels).transpose()  #
    m, n = shape(dataMatrix)  # size, 3
    alpha = 0.001
    maxCycles = 500
    weights = ones((n, 1))  # [3, 1]
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

weights = gradAscent(dataMat,labelMat)
print(weights)
# [[ 4.12414349]
#  [ 0.48007329]
#  [-0.6168482 ]]

最后看一下划分的结果:

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]  # size
    xcord1, ycord1 = [], []
    xcord2, ycord2 = [], []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c="red", marker="s")
    ax.scatter(xcord2, ycord2, s=30, c="green")
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.xlabel("X1")
    plt.ylabel("X2")
    plt.show()

plotBestFit(weights.getA())
logRegres.png

更新参数的方式还有随机梯度下降等等和前馈神经网络类似,所以逻辑回归这里就不详细写了。

相关文章

网友评论

      本文标题:机器学习实战-逻辑回归

      本文链接:https://www.haomeiwen.com/subject/zochxctx.html