Question1
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv
and load the data into R. The code book, describing the variable names is here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FPUMSDataDict06.pdf
How many properties are worth $1,000,000 or more?
if (!file.exists("data")) {
dir.create("data")
}
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
download.file(fileUrl, destfile = "./data/06hid.csv", method = "curl")
dateDownloaded <- date()
HD <- read.csv("./data/06hid.csv")
sum(!is.na(HD[HD$VAL >= 24, 37]))
Question2
Use the data you loaded from Question 1. Consider the variable FES in the code book. Which of the "tidy data" principles does this variable violate?
table(data$FES)
#Answer: Tidy data one variable per column
Question3
Download the Excel spreadsheet on Natural Gas Aquisition Program here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FDATA.gov_NGAP.xlsx
Read rows 18-23 and columns 7-15 into R and assign the result to a variable called:
dat
What is the value of:
sum(dat$Zip*dat$Ext,na.rm=T)
#先去Java官网下载合适的版本
install.packages("rJava")
install.packages("xlsx")
rowIndex = 18 : 23
colIndex = 7 : 15
dat <- read.xlsx("DATA.gov_NGAP.xlsx", sheetIndex = 1, rowIndex = rowIndex,
colIndex = colIndex, header = TRUE)
sum(dat$Zip * dat$Ext, na.rm=T)
Question4
Read the XML data on Baltimore restaurants from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml
How many restaurants have zipcode 21231?
library(XML)
fileUrl <- "http://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml"
doc <- xmlTreeParse(fileUrl, useInternal = TRUE)
rootNode <- xmlRoot(doc)
sum(xpathSApply(rootNode, "//zipcode", xmlValue) == "21231")
Question5
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv
using the fread() command load the data into an R object
DT
The following are ways to calculate the average value of the variable
pwgtp15
broken down by sex. Using the data.table package, which will deliver the fastest user time?
DT[,mean(pwgtp15),by=SEX]
#reference: https://xmuxiaomo.github.io/2015/07/10/Getting-and-Cleaning-Data-Quiz-1/
网友评论