美文网首页
进程间共享存储编程

进程间共享存储编程

作者: cde99bf0b5b1 | 来源:发表于2017-11-08 23:36 被阅读0次
#include <iostream>
#include <libgen.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/stat.h>

using namespace std;

#define USER_LIMIT 5
#define BUFFER_SIZE 1024
#define FD_LIMIT 65535
#define MAX_EVENT_NUMBER 1024
#define PROCESS_LIMIT 65536

struct client_data
{
    sockaddr_in address;
    int connfd;
    pid_t pid;
    int pipefd[2];
};

static const char *shm_name = "/my_shm";
int sig_pipefd[2];
int epollfd;
int listenfd;
int shmfd;
char *share_mem = 0;
client_data *users = 0;
int *sub_process = 0;
int user_count = 0;
bool stop_child = false;

int setnonblocking(int);
void addfd(int, int);
void sig_handler(int);
void addsig(int sig, void(*handler)(int), bool restart = true);
void del_resource();
void child_term_handler(int);
int run_child(int, client_data*, char*);

int main(int argc, char* argv[])
{
    if(argc <= 2)
    {
        cout << "usage: " << basename(argv[0]) << " ip_address port_number" << endl;
    }
    const char* ip = argv[1];
    int port = atoi(argv[2]);

    int ret = 0;
    struct sockaddr_in address;
    bzero(&address, sizeof(address));
    address.sin_family = AF_INET;
    inet_pton(AF_INET, ip, &address.sin_addr);
    address.sin_port = htons(port);

    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    assert(listenfd >= 0);

    ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
    assert(ret != -1);

    ret = listen(listenfd, 5);
    assert(ret != -1);

    user_count = 0;
    users = new client_data[USER_LIMIT + 1];
    sub_process = new int[PROCESS_LIMIT];
    for(int i = 0; i < PROCESS_LIMIT; i++)
    {
        sub_process[i] = -1;
    }

    epoll_event events[MAX_EVENT_NUMBER];
    epollfd = epoll_create(5);
    assert(epollfd != -1);
    addfd(epollfd, listenfd);

    ret = socketpair(AF_UNIX, SOCK_STREAM, 0, sig_pipefd);
    assert(ret != -1);
    setnonblocking(sig_pipefd[1]);
    addfd(epollfd, sig_pipefd[0]);

    addsig(SIGCHLD, sig_handler);
    addsig(SIGTERM, sig_handler);
    addsig(SIGINT, sig_handler);
    addsig(SIGPIPE, SIG_IGN);
    bool stop_server = false;
    bool terminate = false;

    shmfd = shm_open(shm_name, O_CREAT | O_RDWR, 0666);
    assert(shmfd != -1);
    ret = ftruncate(shmfd, USER_LIMIT*BUFFER_SIZE);
    assert(ret != -1);

    share_mem = (char*)mmap(NULL, USER_LIMIT*BUFFER_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
    assert(share_mem != MAP_FAILED);
    close(shmfd);

    while(!stop_server)
    {
        int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
        /*
        EBADF  epfd is not a valid file descriptor.

        EFAULT The  memory  area  pointed  to  by events is not accessible with write permissions.

        EINTR  The call was interrupted by a signal handler before  either  (1)
              any of the requested events occurred or (2) the timeout expired;
              see signal(7).

        EINVAL epfd is not an epoll file descriptor, or maxevents is less  than
              or equal to zero.
        */
        if((number < 0) && (errno != EINTR))
        {
            cout << "epoll failed" << endl;
            break;
        }
        for(int i = 0; i < number; i++)
        {
            int sockfd = events[i].data.fd;
            /*
            *typedef union epoll_data {
            *   void    *ptr;
            *   int      fd;
            *   uint32_t u32;
            *   uint64_t u64;
            *} epoll_data_t;
            *
            * truct epoll_event {
            *   uint32_t     events;    
            *   epoll_data_t data;      
            *};
            */
            if(sockfd == listenfd)
            {
                struct sockaddr_in client_address;
                socklen_t client_addrlength = sizeof(client_address);
                int connfd = accept(listenfd, (struct sockaddr *)&client_address, &client_addrlength);
                if(connfd < 0)
                {
                    cout << "errno is" << errno << endl;
                    continue;
                }
                if(user_count >= USER_LIMIT)
                {
                    const char *info = "too many users";
                    cout << info << endl;
                    send(connfd, info, strlen(info), 0);
                    close(connfd);
                    continue;
                }

                users[user_count].address = client_address;
                users[user_count].connfd = connfd;

                ret = socketpair(AF_UNIX, SOCK_STREAM, 0, users[user_count].pipefd);
                assert(ret != -1);
                pid_t pid = fork();
                if(pid < 0)
                {
                    close(connfd);
                    continue;
                }
                else if(pid == 0)
                {
                    close(epollfd);
                    close(listenfd);
                    close(users[user_count].pipefd[0]);
                    close(sig_pipefd[0]);
                    close(sig_pipefd[1]);
                    run_child(user_count, users, share_mem);
                    munmap((void*)share_mem, USER_LIMIT*BUFFER_SIZE);
                    exit(0);
                }
                else
                {
                    close(connfd);
                    close(users[user_count].pipefd[1]);
                    addfd(epollfd, users[user_count].pipefd[0]);
                    users[user_count].pid = pid;

                    sub_process[pid] = user_count;
                    user_count++;
                }
            }
            /*handle signal*/
            else if((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN))
            {
                int sig;
                char signals[1024];
                ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);
                /*
                These  calls  return  the  number  of bytes received, or -1 if an error
                occurred.  In the event of an error,  errno  is  set  to  indicate  the
                error.
                When a stream socket peer has performed an orderly shutdown, the return
                value will be 0 (the traditional "end-of-file" return).
                Datagram sockets in  various  domains  (e.g.,  the  UNIX  and  Internet
                domains)  permit  zero-length  datagrams.   When  such  a  datagram  is
                received, the return value is 0.
                The value 0 may also be returned if the requested number  of  bytes  to
                receive from a stream socket was 0.
                ERRORS:
                EAGAIN or EWOULDBLOCK
                The socket is marked nonblocking and the receive operation would
                block, or a receive timeout had been set and the timeout expired
                before  data  was  received.   POSIX.1 allows either error to be
                returned for this case, and does not require these constants  to
                have  the same value, so a portable application should check for
                both possibilities.
                ECONNREFUSED
                A remote host refused to allow the network connection (typically
                because it is not running the requested service).
                EBADF EFAULT EINTR
                ENOTCONN
                The socket is associated with a connection-oriented protocol and
                has not been connected
                */
                if(ret == -1)
                {
                    continue;
                }
                else if(ret == 0)
                {
                    continue;

                }
                else
                {
                    for(int i = 0; i < ret; i++)
                    {
                        switch(signals[i])
                        {
                            case SIGCHLD:
                            {
                                pid_t pid;
                                int stat;
                                while((pid = waitpid(-1, &stat, WNOHANG)) > 0)
                                {/*WNOHANG     return immediately if no child has exited.*/
                                    int del_user = sub_process[pid];
                                    sub_process[pid] = -1;
                                    if(del_user < 0 || del_user > USER_LIMIT)
                                        continue;
                                    epoll_ctl(epollfd, EPOLL_CTL_DEL, users[del_user].pipefd[0], 0);
                                    close(users[del_user].pipefd[0]);
                                    users[del_user] = users[--user_count];
                                    sub_process[users[del_user].pid] = del_user;
                                }
                                if(terminate && user_count == 0)
                                {
                                    stop_server = true;
                                }
                                break;
                            case SIGTERM:
                            case SIGINT:
                            {
                                cout << "kill all the child now" << endl;
                                if(user_count == 0)
                                {
                                    stop_server = true;
                                    break;
                                }
                                for(int i = 0; i < user_count; i++)
                                {
                                    int pid = users[i].pid;
                                    kill(pid, SIGTERM);
                                }
                                terminate = true;
                                break;
                            }
                            default:
                                break;
                            }
                        }
                    }
                }
            }
            else if(events[i].events & EPOLLIN)
            {
                int child = 0;
                ret = recv(sockfd, (char *)&child, sizeof(child), 0);
                cout << "read data from child accross pipe" << endl;
                if(ret == -1)
                {
                    continue;
                }
                else if(ret == 0)
                {
                    continue;
                }
                else
                {
                    for(int j = 0; j < user_count; j++)
                    {
                        if(users[j].pipefd[0] != sockfd)
                        {
                            cout << "send data to child accross pipe" << endl;
                            send(users[i].pipefd[0], (char *)&child, sizeof(child), 0);
                        }
                    }
                }
            }
        }
    }

    del_resource();
    return 0;
}

int setnonblocking(int fd)
{
    int old_option = fcntl(fd, F_GETFL);
    int new_option = old_option | O_NONBLOCK;
    fcntl(fd, F_SETFL, new_option);
    return old_option;
}
void addfd(int epollfd, int fd)
{
    epoll_event event;
    event.data.fd = fd;
    event.events = EPOLLIN | EPOLLET;
    epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
    setnonblocking(fd);
}

void sig_handler(int sig)
{
    int save_errno = errno;
    int msg = sig;
    send(sig_pipefd[1], (char*)&msg, 1, 0);
    errno = save_errno;
}

void addsig(int sig, void(*handler)(int), bool restart)
{
    struct sigaction sa;
    memset(&sa, '\0', sizeof(sa));
    sa.sa_handler = handler;
    if(restart)
    {
        sa.sa_flags |= SA_RESTART;
    }
    sigfillset(&sa.sa_mask);
    assert(sigaction(sig, &sa, NULL) != 1);
}

void del_resource()
{
    close(sig_pipefd[0]);
    close(sig_pipefd[1]);
    close(listenfd);
    close(epollfd);
    shm_unlink(shm_name);
    delete[] users;
    delete[] sub_process;
}

void child_term_handler(int sig)
{
    stop_child = true;
}

int run_child(int idx, client_data* users, char *share_mem)
{
    epoll_event events[MAX_EVENT_NUMBER];
    int child_epollfd = epoll_create(5);
    assert(child_epollfd != -1);
    int connfd = users[idx].connfd;
    addfd(child_epollfd, connfd);
    int pipefd = users[idx].pipefd[1];
    addfd(child_epollfd, pipefd);
    int ret;
    addsig(SIGTERM, child_term_handler, false);

    while(!stop_child)
    {
        int number = epoll_wait(child_epollfd, events, MAX_EVENT_NUMBER, -1);
        if(number < 0 && errno != EINTR)
        {
            cout << "epoll failure" << endl;
            break;
        }

        for(int i = 0; i < number; i++)
        {
            int sockfd = events[i].data.fd;
            if(sockfd == connfd && events[i].events & EPOLLIN)
            {
                memset(share_mem + idx*BUFFER_SIZE, '\0', BUFFER_SIZE);
                ret = recv(connfd, share_mem + idx*BUFFER_SIZE, BUFFER_SIZE - 1, 0);
                if(ret < 0)
                {
                    if(errno != EAGAIN)
                        stop_child = true;
                }
                else if(ret == 0)
                {
                    stop_child = true;
                }
                else
                {
                    send(pipefd, (char *)&idx, sizeof(idx), 0);
                }
            }
            else if(sockfd == pipefd && (events[i].events & EPOLLIN))
            {
                int client = 0;
                ret = recv(sockfd, (char *)&client, sizeof(client), 0);
                if(ret < 0)
                {
                    if(errno != EAGAIN)
                        stop_child = true;
                }
                else if(ret == 0)
                {
                    stop_child = true;
                }
                else
                {
                    send(connfd, share_mem+client*BUFFER_SIZE, BUFFER_SIZE, 0);
                }
            }
            else
            {
                continue;
            }
        }
    }

    close(connfd);
    close(pipefd);
    close(child_epollfd);
    return 0;
}

相关文章

  • 进程间共享存储编程

  • 8.ipc

    进程间通信 Linux中的进程间通信主要有:管道、FIFO、消息队列、信号量、共享存储以及网络IPC中的套接字。 ...

  • 操作系统的进程和线程(2)

    9.进程的通信 分为共享存储、消息传递、管道通信三种 共享存储:通信进程之间存在一块可以直接访问的共享空间,低级方...

  • Linux 下的进程间通信:共享存储

    学习在 Linux 中进程是如何与其他进程进行同步的。 本篇是 Linux 下进程间通信(IPC)系列的第一篇文章...

  • 共享内存之——mmap内存映射

    文章转自博客园。原文 共享内存允许两个或多个进程共享一给定的存储区,因为数据不需要来回复制,所以是最快的一种进程间...

  • Android

    ContentProvider 作用 进程间数据共享 即跨进程通信 原理 Binder进程间通信结合匿名共享内存(...

  • 共享内存

    Linux进程间通信 - 共享内存

  • 第二十三章 进程间通信介绍(一)

    本章目标: 进程同步与进程互斥 进程间通信目的 进程间通信发展 进程间通信分类 进程间共享信息的三种方式 IPC对...

  • Binder跨进程通信机制

    一、相关概念 进程空间把进程空间分为用户空间和内核空间。进程间:用户空间不可共享,内核空间可以共享,所有进程共用一...

  • 进程间的六种通信

    进程间的通信 进程间的通信有6种:Bundle、文件共享、ContentProvider、AIDL、Messeng...

网友评论

      本文标题:进程间共享存储编程

      本文链接:https://www.haomeiwen.com/subject/zrmumxtx.html