美文网首页
我的业务要不要用人工智能?引入AI前你需要评估的(三)

我的业务要不要用人工智能?引入AI前你需要评估的(三)

作者: easyAI人工智能知识库 | 来源:发表于2019-12-09 20:10 被阅读0次

    这是一个系列文章,从各个角度来评估一个问题:“我的业务要不要用 AI ?能不能用 AI?”

    本期评估角度——学习

    往期内容:

    我的业务要不要用人工智能?引入AI前你需要评估的(一)

    我的业务要不要用人工智能?引入AI前你需要评估的(二)

    「持续学习」是人工智能的灵魂

    前两篇已经解释了,基于规则的能力边界很小,很多实际问题无法通过规则的方法来解决。人工智能可以扩大计算机的能力边界

    除了扩大能力边界外,人工智能还有一个非常重要的特性——持续学习,不断提升能力上限

    人工智能可以扩展计算机的能力边界和能力上限

    大家都知道 AlphaGo 在围棋上战胜了世界上最厉害的围棋高手,但是大家可能不知道的是:

    AlphaGo Zero (AlphaGo的升级版),从空白开始自学围棋,3天就战胜了 AlphaGo,战绩是100 : 0。

    也就是说:机器通过 7x24 的持续和快速的学习,只需要3天时间就能超越人类十几年的积累。

    alphago

    AlphaGo 的例子有些极端,很多场景下机器的学习速度不会那么的快,我想表达的重点是:

    过去,计算机的能力上限就是人类赋予的,需要人类告诉计算机怎么做才行。

    现在,人工智能可以自学成才,不受人类认知边界的束缚。

    未来,人们担心机器会全面超越人类,甚至对人类产生威胁。

    事实上,人工智能在图像识别、人脸识别、语音识别等很多领域已经超越

    人工智能打破了人类的认知的束缚

    对于人工智能能力有多大的问题,人类已经给人工智能分好了级别:

    • 目前大家看到的都是「弱人工智能」;

    • 当 AI 像人类一样,能做很多事情时,就达到了「强人工智能」;

    • 当 AI 在各方面的能力已经远远超过人类时,就实现了「超人工智能」

    扩展阅读:《3分钟理解人工智能的3个级别?(弱人工智能-强人工智能-超人工智能)

    所以:让机器持续的学习,是人工智能的灵魂。想要利用人工智能技术来解决实际问题,你必须考虑2个问题:

    1. 我需要解决的问题是动态变化的吗?需要持续学习的能力吗?

    2. 我能否让人工智能实现持续学习(下面要讲的内容)?

    如何让机器持续的学习?

    想要让机器实现持续学习的能力,需要具备2个条件:

    1. 是否可以获得反馈数据?

    2. 数据是否可以形成闭环?

    是否可以获得反馈数据?

    想想我们小时候是怎么学习识字的,一开始出错概率很高,每次出错的时候父母和老师都会告诉我们哪里错了,应该是什么。就是在这种「行动 - 反馈 - 修正 - 再行动」的循环中实现了有效的学习。

    跟人类识字的学习过程类似,机器也需要「有效的反馈」来实现持续的学习,如果没有反馈数据,那么有问题的地方会一直存在问题,永远无法进步。

    所以,有效的反馈数据是学习的重要环节,解决了「学习」问题。

    数据是否可以形成闭环?

    当我们可以获得反馈数据的时候,机器就可以实现学习了,下一步就是解决「持续」的问题。

    还是举识字的例子。假如有2个小朋友同时开始学识字。

    • 小朋友A有一个老师可以随时辅导,纠正错误

    • 小朋友B每个星期只有1天可以接受老师的辅导

    毫无疑问,一定是小朋友A学的更快,更好。

    机器也是如此,让数据形成闭环,就是希望能够获得「实时」的反馈数据,跟小朋友A一样获得贴身辅导。

    所谓的数据闭环就是将上面的「行动 - 反馈 - 修正 - 再行动」循环自动的在机器上运转,完全不需要人参与。

    在实际应用中有一个很典型的例子就是电商平台里的推荐系统。你刚看完一双篮球鞋,瞬间就会给你推荐一大堆篮球鞋。

    所以,数据形成闭环,可以让机器实现了持续学习,解决的是「持续」问题。

    案例分析

    案例分析-google

    Google 相册里的人脸识别是怎么收集反馈数据和形成数据闭环的?

    现在很多相册 App 都有人脸识别的功能,能自动帮你将照片按照不同的人来做分类。但是实际使用中一定会遇到很多判断错误的情况。

    如果不收集反馈数据,让数据形成闭环,错误会一直持续下去!

    第一步:主动询问用户

    有些照片清晰度不高,或者某些人发型变化很大,或者某些人卸了妆...

    有很多原因导致机器拿不准自己的判断,这个不怪机器,很多女性化了妆自己的亲人都认不出来。

    这个时候,Google相册会主动询问用户,2个头像是否是同一个人,如下图:

    第二步:能力升级

    假如我选择了「同一人」,当机器收集了用户的反馈后,第一件事情就是将他们的照片合并到一起。

    还有一件更重要的事情,机器学会了一些东西:

    • 机器知道了化妆:原来这个人化妆后是这样的。

    • 机器知道了长胖:原来长胖后变成这样了。

    • 机器知道了变老:人老了会原来会有这些变化。

    人工智能告诉我们,蜘蛛侠变老是这样的:

    总结

    人工智能之所以被大家寄予厚望,有一个很重要的原因就是:

    AI 可以通过持续不断的学习,突破人类的能力上限。甚至有人预估机器会在所有方面都超越人类。

    为了让机器实现持续不断的学习,我们需要实现2个条件:

    1. 不断的获得反馈数据,让机器知道自己哪里好,哪里不好

    2. 将反馈数据加入闭环,机器能否持久的学习,提升能力

    在评估「要不要用」和「能不能用」人工智能时,需要考虑很多问题。这个系列还会持续更新,感兴趣的朋友可以加我微信。

    微信号:pkqiang49
    本文首发自 产品经理的 AI 学习库 easyai.tech

    相关文章

      网友评论

          本文标题:我的业务要不要用人工智能?引入AI前你需要评估的(三)

          本文链接:https://www.haomeiwen.com/subject/zruigctx.html