美文网首页
吴恩达第一次作业代码理解

吴恩达第一次作业代码理解

作者: 自学java的菜鸟小赵 | 来源:发表于2020-10-16 19:11 被阅读0次

    看了吴老师的视频,准备练习一下课后作业,发现完全懵啊,从网上找到了答案,记录下来好好学习一下。

    1.一元线性回归

    from matplotlib import pyplot as plt
    import numpy as  np
    import pandas as pd
    
    path1 = './ex1data1.txt'
    data2=pd.read_csv(path1,header=None,names=['Population', 'Profit'])
    plt.figure(figsize=(20,8),dpi=80)
    
    x=data2.loc[:,'Population']
    y=data2.loc[:,'Profit']
    plt.scatter(x,y)
    plt.show()
    
    #梯度下降
    def computeCost(X, y, theta):
        inner = np.power(((X * theta.T) - y), 2)
        return np.sum(inner) / (2 * len(X))
    #这个部分计算J(Ѳ),X是矩阵
    
    #添加一个全为1,列名为Ones的一列
    data2.insert(0, 'Ones', 1)
    
    cols = data2.shape[1]
    X = data2.iloc[:,0:cols-1]#X是所有行,去掉最后一列
    y = data2.iloc[:,cols-1:cols]#X是所有行,最后一列
    
    print(X.head())
    #生成X和y矩阵
    X = np.asmatrix(X.values)
    y = np.asmatrix(y.values)
    theta = np.asmatrix(np.array([0,0]))
    print(X.shape, theta.shape, y.shape)
    print(computeCost(X, y, theta))
    

    计算代价函数

    1.当𝜃0,𝜃1为0时

    假设函数ℎ𝜃(𝑥)=𝜃𝑇𝑋=𝜃0𝑥0+𝜃1𝑥1
    代价函数𝐽(𝜃)=12𝑚∑𝑖=1𝑚(ℎ𝜃(𝑥(𝑖))−𝑦(𝑖))2

    def computeCost(X, y, theta):
        inner = np.power(((X * theta.T) - y), 2)
        return np.sum(inner) / (2 * len(X))
    

    这个函数就是用来计算代价函数𝐽(𝜃)的值,当不进行调参,使用𝜃0,𝜃1为0时进行计算,我们可以计算𝐽(𝜃)的值是32.072733877455676

    2.梯度下降算法计算𝜃值

    from matplotlib import pyplot as plt
    import numpy as  np
    import pandas as pd
    
    path1 = './ex1data1.txt'
    data=pd.read_csv(path1,header=None,names=['Population', 'Profit'])
    
    data.insert(0, 'Ones', 1)
    
    print(data.head())
    cols = data.shape[1]
    X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列
    y = data.iloc[:,cols-1:cols]#X是所有行,最后一列
    
    X = np.asmatrix(X.values)
    y = np.asmatrix(y.values)
    theta = np.asmatrix(np.array([0,0]))
    #--------------------------------------------------------------------------------
    
    #计算代价函数的值ℎ𝜃(𝑥)
    def computeCost(X, y, theta):
        inner = np.power(((X * theta.T) - y), 2)
        return np.sum(inner) / (2 * len(X))
    
    #当参数的值都为0时,计算代价函数的值
    print(computeCost(X,y,theta))
    
    #--------------------------------------------------------------------------------
    # batch gradient decent(批量梯度下降)
    # 𝜃𝑗:=𝜃𝑗−𝛼∂∂𝜃𝑗𝐽(𝜃)
    #调整𝜃𝑗
    def gradientDescent(X, y, theta, alpha, iters):
        #生成一个(1,2)的矩阵
        temp = np.asmatrix(np.zeros(theta.shape))
    
        parameters = int(theta.ravel().shape[1])
    
        cost = np.zeros(iters)
    
        for i in range(iters):
    
            error = (X * theta.T) - y
    
            for j in range(parameters):
                #矩阵对应位置相乘,矩阵相乘使用np.dot()
                term = np.multiply(error, X[:, j])
                temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term))
    
            theta = temp
            cost[i] = computeCost(X, y, theta)
    
        return theta, cost
    
    #学习率
    alpha = 0.01
    #迭代次数
    iters = 1000
    
    #--------------------------------------------------------------------------------
    g, cost = gradientDescent(X, y, theta, alpha, iters)
    #迭代1000次以后对应的𝜃𝑗值
    print('g{}\n'.format(g))
    print(computeCost(X, y, g))
    
    
    #--------------------------------------------------------------------------------
    #numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
    #产生从start到stop的等差数列,num为元素个数,默认50个
    x = np.linspace(data.Population.min(), data.Population.max(), 100)
    
    f = g[0, 0] + (g[0, 1] * x)
    # fig, ax = plt.subplots(figsize=(12,8))
    # ax.plot(x, f, 'r', label='Prediction')
    # # ax.scatter(data.Population, data.Profit, label='Traning Data')
    # # ax.legend(loc=2)
    plt.figure(figsize=(20,8),dpi=80)
    plt.plot(x,f,color='red',label='Prediction')
    plt.scatter(data.Population, data.Profit, label='Traning Data')
    plt.xlabel('Population')
    plt.ylabel('Profit')
    plt.title('Predicted Profit vs. Population Size')
    plt.show()
    
    #---------------------------------------------------------------------------------
    plt.figure(figsize=(20,8),dpi=80)
    plt.plot(np.arange(iters), cost, 'r')
    plt.xlabel('Iterations')
    plt.ylabel('Cost')
    plt.title('Error vs. Training Epoch')
    plt.show()
    

    画图


    image.png
    image.png

    3.多元线性回归梯度下降

    from matplotlib import pyplot as plt
    import numpy as  np
    import pandas as pd
    from mpl_toolkits.mplot3d import Axes3D
    
    path =  './ex1data2.txt'
    data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
    print(data2.head())
    #计算标准差,这里用来特正化归一
    data2 = (data2 - data2.mean()) / data2.std()
    print(data2.head())
    
    def computeCost(X, y, theta):
        inner = np.power(((X * theta.T) - y), 2)
        return np.sum(inner) / (2 * len(X))
    
    def gradientDescent(X, y, theta, alpha, iters):
        #生成一个(1,2)的矩阵
        temp = np.asmatrix(np.zeros(theta.shape))
    
        parameters = int(theta.ravel().shape[1])
    
        cost = np.zeros(iters)
    
        for i in range(iters):
    
            error = (X * theta.T) - y
    
            for j in range(parameters):
                #矩阵对应位置相乘,矩阵相乘使用np.dot()
                term = np.multiply(error, X[:, j])
                temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term))
    
            theta = temp
            cost[i] = computeCost(X, y, theta)
    
        return theta, cost
    
    #学习率
    alpha = 0.01
    #迭代次数
    iters = 1000
    # add ones column
    data2.insert(0, 'Ones', 1)
    
    # set X (training data) and y (target variable)
    cols = data2.shape[1]
    X2 = data2.iloc[:,0:cols-1]
    y2 = data2.iloc[:,cols-1:cols]
    
    # convert to matrices and initialize theta
    X2 = np.asmatrix(X2.values)
    y2 = np.asmatrix(y2.values)
    theta2 = np.asmatrix(np.array([0,0,0]))
    
    # perform linear regression on the data set
    g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters)
    # get the cost (error) of the model
    print(computeCost(X2, y2, g2))
    
    fig, ax = plt.subplots(figsize=(12,8))
    ax.plot(np.arange(iters), cost2, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title('Error vs. Training Epoch')
    plt.show()
    
    image.png

    4.正规方程

    from matplotlib import pyplot as plt
    import numpy as  np
    import pandas as pd
    from sklearn import linear_model
    
    
    path1 = './ex1data1.txt'
    data=pd.read_csv(path1,header=None,names=['Population', 'Profit'])
    plt.figure(figsize=(20,8),dpi=80)
    data.insert(0, 'Ones', 1)
    
    cols = data.shape[1]
    X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列
    y = data.iloc[:,cols-1:cols]#X是所有行,最后一列
    X = np.asmatrix(X.values)
    y = np.asmatrix(y.values)
    theta = np.asmatrix(np.array([0,0]))
    
    
    model = linear_model.LinearRegression()
    model.fit(X, y)
    
    #转化成一维数组
    x = np.array(X[:, 1].A1)
    #进行预测转化成一维数组
    f = model.predict(X).flatten()
    
    
    fig, ax = plt.subplots(figsize=(12,8))
    ax.plot(x, f, 'r', label='Prediction')
    ax.scatter(data.Population, data.Profit, label='Traning Data')
    ax.legend(loc=2)
    ax.set_xlabel('Population')
    ax.set_ylabel('Profit')
    ax.set_title('Predicted Profit vs. Population Size')
    plt.show()
    
    # 正规方程
    def normalEqn(X, y):
    #计算逆矩阵
        theta = np.linalg.inv(X.T@X)@X.T@y#X.T@X等价于X.T.dot(X)
        return theta
    
    final_theta2=normalEqn(X, y)#感觉和批量梯度下降的theta的值有点差距
    print(final_theta2)
    
    image.png
    image.png

    相关文章

      网友评论

          本文标题:吴恩达第一次作业代码理解

          本文链接:https://www.haomeiwen.com/subject/zrxtmktx.html