美文网首页
学习笔记:Python深度学习----深度学习实践

学习笔记:Python深度学习----深度学习实践

作者: zhaosonghui | 来源:发表于2020-03-17 22:34 被阅读0次

    深度学习用于计算机视觉

    卷积运算

    1. 密集连接层和卷积层的根本区别在于Dense层从输入特征空间学习到的是全局模式,conv学习到的是局部模式,所以Convnet的两个特质:
      • Convnet学习到的模式具有translation invariant,即学习到某个局部模式之后,可以在任何地方识别该模式,因此可以更高效的利用数据,更少的样本即可以习得泛化能力的表示
      • Convnet可以学到模式的空间层次结构(spatial hierarchies of patterns), 即第一层学习较小的局部模式,第二层学习第一层特征组成的更大的模式,以此类推。
    2. 卷积的工作原理

      在3D输入特征图上滑动给定尺寸的窗口,在每个可能的位置停止并提取周围的3D图块,其形状为(window_height, window_width, input_depth)。然后每个3D图块与学到的同一个权重矩阵(卷积核,Convolution kernel)做张量积,转换为形状为1D的向量(output_depth)。然后对所有这些向量进行空间重组,转换为3D输出特征图(height, width, output_depth)。输出特征图中的每个空间位置都对应输入特征图中的相同位置。

    • 卷积的两个关键的参数

      -从输入中提取的图块尺寸,即给定尺寸,通常为3x3或5x5
      -输出特征图的深度:卷积所计算的过滤器的数量

    • 特别的,图像识别中,输入的3D张量形状为(height, width, depth),其中深度轴对于RGB来讲为3,对于黑白来讲为1。卷积运算从输入特征图提取图块,进行相同的变换,生成输出特征图,该输出特征图同样是3D张量,不同的是深度可以是任意数值,因为其表示的不再是颜色而是代表过滤器(filter),即对数据数据的某一方面的编码
    • 输出的高度和宽度和输入会有不同,原因如下:
      • 边界效应
      • 步幅:即窗口滑动的距离

    最大池化运算

    • 对特征图进行下采样
      • 减少需要处理的特征图的个数
      • 通过让连续的卷积层的观察窗口越来越大,从而引入空间过滤器的层级结构

    深度学习应用于小型数据集的策略

    • 从头开始训练小的模型
    • 使用预训练的网络做特征提取
    • 对预训练的网络进行微调

    相关文章

      网友评论

          本文标题:学习笔记:Python深度学习----深度学习实践

          本文链接:https://www.haomeiwen.com/subject/ztenrhtx.html