美文网首页
GPU 加速

GPU 加速

作者: 地平线上的背影 | 来源:发表于2019-02-14 08:50 被阅读0次

    Pytorch支持GPU的CUDA加速,同时也支持CPU单独运算。所以当我们需要GPU加速时 一般需要显式指出,这一点不同于TF。

    1. 准备和超参数设置

    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    
    # torch.manual_seed(1)
    
    EPOCH = 1
    BATCH_SIZE = 50
    LR = 0.001
    DOWNLOAD_MNIST = False
    
    train_data = torchvision.datasets.MNIST(root='./mnist/', train=True, transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST,)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    

    2. GPU加速设置点一:加载测试数据至GPU

    # !!!!!!!! Change in here !!!!!!!!! #
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000].cuda()/255.   # Tensor on GPU
    test_y = test_data.test_labels[:2000].cuda()
    

    注:使用GPU加速需要将数据加载到GPU上,一般使用cuda()函数即可

    3. 构建CNN网络

    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2,),
                                       nn.ReLU(), nn.MaxPool2d(kernel_size=2),)
            self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2),)
            self.out = nn.Linear(32 * 7 * 7, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = x.view(x.size(0), -1)
            output = self.out(x)
            return output
    
    cnn = CNN()
    

    4. GPU加速设置点二:加载网络至GPU

    # !!!!!!!! Change in here !!!!!!!!! #
    cnn.cuda()      # Moves all model parameters and buffers to the GPU.
    

    5. 选择优化器和损失函数

    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
    loss_func = nn.CrossEntropyLoss()
    

    6. 训练和优化

    for epoch in range(EPOCH):
        for step, (x, y) in enumerate(train_loader):
    
            # !!!!!!!! Change in here !!!!!!!!! #
            b_x = x.cuda()    # Tensor on GPU
            b_y = y.cuda()    # Tensor on GPU
    
            output = cnn(b_x)
            loss = loss_func(output, b_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    

    7. 训练过程和结果可视化

            if step % 50 == 0:
                test_output = cnn(test_x)
    

    8. GPU加速设置点三:加载数据至GPU

                # !!!!!!!! Change in here !!!!!!!!! #
                pred_y = torch.max(test_output, 1)[1].cuda().data  # move the computation in GPU
    

    9. 设置accuracy

                accuracy = torch.sum(pred_y == test_y).type(torch.FloatTensor) / test_y.size(0)
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(), '| test accuracy: %.2f' % accuracy)
    
    test_output = cnn(test_x[:10])
    

    10.GPU加速设置点四:加载数据至GPU

    # !!!!!!!! Change in here !!!!!!!!! #
    pred_y = torch.max(test_output, 1)[1].cuda().data # move the computation in GPU
    
    print(pred_y, 'prediction number')
    print(test_y[:10], 'real number')
    

    相关文章

      网友评论

          本文标题:GPU 加速

          本文链接:https://www.haomeiwen.com/subject/zubreqtx.html