美文网首页囧囧算法
从暴力递归到动态规划-01

从暴力递归到动态规划-01

作者: 囧么肥事 | 来源:发表于2019-07-29 17:26 被阅读0次

    年轻即出发...

    简书https://www.jianshu.com/u/7110a2ba6f9e

    知乎https://www.zhihu.com/people/zqtao23/posts

    GitHub源码https://github.com/zqtao2332

    个人网站http://www.zqtaotao.cn/ (停止维护更新内容)

    QQ交流群:606939954

    ​ 咆哮怪兽一枚...嗷嗷嗷...趁你现在还有时间,尽你自己最大的努力。努力做成你最想做的那件事,成为你最想成为的那种人,过着你最想过的那种生活。也许我们始终都只是一个小人物,但这并不妨碍我们选择用什么样的方式活下去,这个世界永远比你想的要更精彩。

    最后:喜欢编程,对生活充满激情



    本节内容预告

    实例1:玩家选数问题

    实例2:

    实例3:

    实例4:

    实例5:



    实例1:玩家选数问题

    有一排正数,玩家A和玩家B都可以看到。
    每位玩家在拿走数字的时候,都只能从最左和最右的数中选择一个。
    玩家A先拿,玩家B再拿,两人交替拿走所有的数字,
    两人都力争自己拿到的数的总和比对方多。请返回最后获胜者的分数。

    例如:
    5,2,3,4
    玩家A先拿,当前他只能拿走5或者4。
    如果玩家A拿走5,那么剩下2,3,4。轮到玩家B,此时玩家B可以选择2或4中的一个,…
    如果玩家A拿走4,那么剩下5,2,3。轮到玩家B,此时玩家B可以选择5或3中的一个,…

    思路1、递归: 暴力尝试

      自己分别作为先选人,后选人,查看收益最大
      无论是作为先选人,还是作为后选人,都是绝对理智的,每一次做出的选择都是最优的
      
      具体过程见代码详解
    
    1_1_递归过程依赖图.png
    /**
     * @description: 两人选数游戏
     * 思路1、递归: 暴力尝试
     * @version: 1.0
     */
    public class Code_01_CardsInLine_1 {
    
        // 方式1、递归: 暴力尝试
        public static int win1(int[] arr) {
            if (arr == null || arr.length == 0) return 0;
    
            // 自己分别作为先选人,后选人,查看收益最大
            // 无论是作为先选人,还是作为后选人,都是绝对理智的,每一次做出的选择都是最优的
            return Math.max(first(arr, 0, arr.length - 1), second(arr, 0, arr.length - 1));
        }
    
        /*
            作为先选人,从 i 到 j 位置上获得的最大分数
    
            核心:我作为先选人每一次决策都是选择的最优的
    
            如:
            5 2 3 4
            那么我作为先选者一定最终做出的选择的是 (5 + 作为后选人最大分数)(4 + 作为后选人最大分数)中最大分数的
         */
        public static int first(int[] arr, int i, int j) {
            if (i == j) { // 只有一个数,同时作为先选人,当然返回这个唯一的数
                return arr[i];
            }
    
            // 选择左边数,然后自己变成了后选人
            // 从 i 到 j 位置上获得的最大分数 = 左边数 + 自己变为后选人从 i+1 到 j 位置上获得的最大分数
            int L = arr[i] + second(arr, i + 1, j);
    
            // 选择右边数,然后自己变成了后选人
            // 从 i 到 j 位置上获得的最大分数 = 右边数 + 自己变为后选人从 i 到 j-1 位置上获得的最大分数
            int R = arr[j] + second(arr, i, j - 1);
    
            // 返回自己选择左边数和选择右边数两种情况下,最大的分数
            return Math.max(L, R);
        }
    
        /*
            作为后选人,从i 到 j 位置上获得的最大分数
    
            核心:每一次都认为先选人做出的选择是最优的,留给自己的一定是最小的
    
            5 2 3 4
            先选人,选了 5 给自己留下 2 3 4 = 9
            先选人,选了 4 给自己留下 5 2 3 = 10
    
            先选人怎么可能那么好心让自己赢,我们都是绝对理智的人
            所以
    
            我作为后选人,悲催的只能在先选人选择后的区域选择我的数
            但是我现在也不知道那边的数大,需要计算才能知道先选人选择的到底是哪边的数?
    
            5 2 3 4
            先选人,选了 5 给自己留下 2 3 4 = 9
            先选人,选了 4 给自己留下 5 2 3 = 10
    
            通过计算发现,9 < 10 ,先选人既然是绝对理智的,那么他给我留下的就是最小的
            而我,只能从最小的那几个数中找最大的分数。
    
            由于先选人已经选择了,现在他退位到后选人,我上了先选人位置,即,我现在是先选人。
    
            总结: 我作为后选人做出什么样的决定,完全取决于先选人做出了什么决定,先选人扔给我的一定是最小的
    
         */
        public static int second(int[] arr, int i, int j) {
            if (i == j) { //只有一个数,自己作为后选人,自己前面有一个先选人,先选人选择后,剩下0个数可选
                return 0;
            }
    
            // 现在我是先选人,选择左边数
            int L = first(arr, i + 1, j);
            // 现在我是先选人,选择右边数
            int R = second(arr, i, j - 1);
    
            // 我只能从最小的区域中进行选择
            return Math.min(L, R);
        }
    }
    
    

    思路2:从暴力递归到动态规划

    暴力递归其实就是一个暴力尝试过程,尝试每一种选择
    
    缺点:重复的大量计算,而且这种重复计算随着样本量的增加而指数式增加,做了很多无用功
    

    暴力递归到动态规划的一般步骤

    动态规划:
       1、写出暴力尝试
       2、确定最终解,是什么点
       3、查看暴力尝试过程中的计算解,是否是完全无后效性的
       4、找到可以代替解的变量
       5、base case 给表赋值
       6、一般情况的依赖关系
    

    根据题具体分析

       1、暴力尝试:win1()
       
       2、确定最终解:(0, N-1) 点
       
       3、win1() 中 f(arr, i, j)  arr 是固定值,f(i , j) 是无效性的
       
       4、可以用 i , j  表示解
       
       5、根据递归中的base case 来给表赋值(不变值,基本情况下的值,如本题 i==j 时)
       
       6、一般情况下的依赖关系
         first() (i,j) 依赖于second() 中的 (i+1, j) 和 (i, j-1)
         second() (i,j) 依赖于 first() 中的 (i+1,j) 和 (i, j-1)
    
    1_2_fs依赖关系.png
    import static cn.zqtao.learn.nowcode_other.day1.Code_01_CardsInLine_1.win1;
    
    /**
     * @description: 两人选数游戏
     * 思路2:从暴力递归到动态规划
     * <p>
     * 暴力递归其实就是一个暴力尝试过程,尝试每一种选择
     * 缺点:重复的大量计算,而且这种重复计算随着样本量的增加而指数式增加,做了很多无用功
     * <p>
     * 动态规划:
     * 1、写出暴力尝试
     * 2、确定最终解,是什么点
     * 3、查看暴力尝试过程中的计算解,是否是完全无后效性的
     * 4、找到可以代替解的变量
     * 5、base case 给表赋值
     * 6、一般情况的依赖关系
     * <p>
     * 1、暴力尝试:win1()
     * 2、确定最终解:(0, N-1) 点
     * 3、win1() 中 f(arr, i, j)  arr 是固定值,f(i , j) 是无效性的
     * 4、可以用 i , j  表示解
     * 5、根据递归中的base case 来给表赋值(不变值,基本情况下的值,如本题 i==j 时)
     * 6、一般情况下的依赖关系
     *      first() (i,j) 依赖于second() 中的 (i+1, j) 和 (i, j-1)
     *      second() (i,j) 依赖于 first() 中的 (i+1,j) 和 (i, j-1)
     * <p>
     * <p>
     * 暴力尝试可以使用表进行表示
     * dpf 可以保存所有 first() 的所有情况
     * dps 可以保存所有 second() 的所有情况
     * <p>
     * first() 中
     * @version: 1.0
     */
    public class Code_02_CardsInLine_2 {
    
        public static int win2(int[] arr) {
            if (arr == null || arr.length == 0) return 0;
    
            // 保存各种状态
            int[][] dpf = new int[arr.length][arr.length];
            int[][] dps = new int[arr.length][arr.length];
    
            for (int j = 0; j < arr.length; j++) {
    
                dpf[j][j] = arr[j]; // first() 中 base case 中 i==j 情况赋值
    //            dps[j][j] = 0; // second() 中 base case 中 i==j 情况,由于Java是自动给数组初始化为0 的所以可以忽略
    
                for (int i = j - 1; i >= 0; i--) {
                    // 一般情况依赖关系
                    // first() (i,j) 依赖于second() 中的 (i+1, j) 和 (i, j-1)
                    dpf[i][j] = Math.max(arr[i] + dps[i + 1][j], arr[j] + dps[i][j - 1]);
    
                    // second() (i,j) 依赖于 first() 中的 (i+1,j) 和 (i, j-1)
                    dps[i][j] = Math.min(dpf[i + 1][j], dpf[i][j - 1]);
                }
    
            }
            return Math.max(dpf[0][arr.length - 1], dps[0][arr.length - 1]);
        }
    
    
        public static int[] generateRandomArr(int maxSize, int maxValue) {
            int[] arr = new int[(int) (Math.random() * (maxSize + 1))];
            return arr;
        }
    
        public static void main(String[] args) {
            int maxSize = 5;
            int testTime = 50000;
    
            for (int i = 0; i < testTime; i++) {
                int[] arr = generateRandomArr(maxSize, 20);
                int r1 = win1(arr);
                int r2 = win2(arr);
                if (r1 != r2) {
                    System.out.println("error");
                }
            }
        }
    }
    

    相关文章

      网友评论

        本文标题:从暴力递归到动态规划-01

        本文链接:https://www.haomeiwen.com/subject/zvcirctx.html