39 Pandas处理Excel - 复杂多列到多行转换
用户需求图片
分析:
- 一行变多行,可以用explode实现;
- 要使用explode,需要先将多列变成一列;
- 注意有的列为空,需要做空值过滤;
1. 读取数据
import pandas as pd
file_path = "./course_datas/c39_explode_to_manyrows/读者提供的数据-输入.xlsx"
df = pd.read_excel(file_path)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
Supplier |
Supplier PN |
Supplier.1 |
Supplier PN.1 |
Supplier.2 |
Supplier PN.2 |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA |
GRM1555C1H101JA01D |
YAGEO |
CC0402JRNPO9BN101 |
GRM1555C1H101JA01J |
Murata Electronics North America |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation |
04025A6R8CAT2A |
KEMET |
C0402C689C5GACTU |
NaN |
NaN |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation |
04025A3R9CAT2A |
NaN |
NaN |
NaN |
NaN |
2. 把多列合并到一列
merge_names = list(df.loc[:, "Supplier":].columns.values)
merge_names
['Supplier',
'Supplier PN',
'Supplier.1',
'Supplier PN.1',
'Supplier.2',
'Supplier PN.2']
def merge_cols(x):
"""
x是一个行Series,把它们按分隔符合并
"""
x = x[x.notna()]
y = x.values
result = []
for idx in range(0, len(y), 2):
result.append(f"{y[idx]}|{y[idx+1]}")
return "#".join(result)
df["merge"] = df.loc[:, "Supplier":].apply(merge_cols, axis=1)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
Supplier |
Supplier PN |
Supplier.1 |
Supplier PN.1 |
Supplier.2 |
Supplier PN.2 |
merge |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA |
GRM1555C1H101JA01D |
YAGEO |
CC0402JRNPO9BN101 |
GRM1555C1H101JA01J |
Murata Electronics North America |
MURATA|GRM1555C1H101JA01D#YAGEO|CC0402JRNPO9BN... |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation |
04025A6R8CAT2A |
KEMET |
C0402C689C5GACTU |
NaN |
NaN |
AVX Corporation|04025A6R8CAT2A#KEMET|C0402C689... |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation |
04025A3R9CAT2A |
NaN |
NaN |
NaN |
NaN |
AVX Corporation|04025A3R9CAT2A |
df.drop(merge_names, axis=1, inplace=True)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
merge |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA|GRM1555C1H101JA01D#YAGEO|CC0402JRNPO9BN... |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation|04025A6R8CAT2A#KEMET|C0402C689... |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation|04025A3R9CAT2A |
3. 使用explode把一列变多行
df["merge"] = df["merge"].str.split("#")
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
merge |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
[MURATA|GRM1555C1H101JA01D, YAGEO|CC0402JRNPO9... |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
[AVX Corporation|04025A6R8CAT2A, KEMET|C0402C6... |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
[AVX Corporation|04025A3R9CAT2A] |
df_explode = df.explode("merge")
df_explode
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
merge |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA|GRM1555C1H101JA01D |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
YAGEO|CC0402JRNPO9BN101 |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
GRM1555C1H101JA01J|Murata Electronics North Am... |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation|04025A6R8CAT2A |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
KEMET|C0402C689C5GACTU |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation|04025A3R9CAT2A |
4. 将一列还原成结果的多列
df_explode["Supplier"]=df_explode["merge"].str.split("|").str[0]
df_explode["Supplier PN"]=df_explode["merge"].str.split("|").str[1]
df_explode
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
merge |
Supplier |
Supplier PN |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA|GRM1555C1H101JA01D |
MURATA |
GRM1555C1H101JA01D |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
YAGEO|CC0402JRNPO9BN101 |
YAGEO |
CC0402JRNPO9BN101 |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
GRM1555C1H101JA01J|Murata Electronics North Am... |
GRM1555C1H101JA01J |
Murata Electronics North America |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation|04025A6R8CAT2A |
AVX Corporation |
04025A6R8CAT2A |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
KEMET|C0402C689C5GACTU |
KEMET |
C0402C689C5GACTU |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation|04025A3R9CAT2A |
AVX Corporation |
04025A3R9CAT2A |
df_explode.drop("merge", axis=1, inplace=True)
df_explode
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
|
P/N |
Description |
Supplier |
Supplier PN |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
MURATA |
GRM1555C1H101JA01D |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
YAGEO |
CC0402JRNPO9BN101 |
0 |
302-462-326 |
CAP CER 0402 100pF 5% 50V |
GRM1555C1H101JA01J |
Murata Electronics North America |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
AVX Corporation |
04025A6R8CAT2A |
1 |
302-462-012 |
CAP CER 0402 6.8pF 0.25pF 50V |
KEMET |
C0402C689C5GACTU |
2 |
302-462-009 |
CAP CER 0402 3.9pF 0.25pF 50V |
AVX Corporation |
04025A3R9CAT2A |
5. 输出到结果Excel
df_explode.to_excel("./course_datas/c39_explode_to_manyrows/读者提供的数据-输出.xlsx", index=False)
本文使用 文章同步助手 同步
网友评论