1 Keras overview
https://www.tensorflow.org/guide/keras
建立模型步骤compile fit evaluate predict和输入dataset
高级方法functional API, subclassing model, custom layer, callbacks
save and restore, eager execution, distribution
1.1 Import tf.keras
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow import keras
not uptodate version compared to keras
defaults to the checkpoint format not HDF5(pass save_format='h5' to use)
1.2 Build a simple model
- 序列模型
model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation='relu'))
# Add another:
model.add(layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation='softmax'))
- 这些层可以配置
activation激活函数, kernel_initializer和bias_initializer初始化方案, kernel_regularizer和bias_regularizer 正则化方案
1.3 训练和评估
model = tf.keras.Sequential([
# Adds a densely-connected layer with 64 units to the model:
layers.Dense(64, activation='relu', input_shape=(32,)),
# Add another:
layers.Dense(64, activation='relu'),
# Add a softmax layer with 10 output units:
layers.Dense(10, activation='softmax')])
model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
loss='categorical_crossentropy',
metrics=['accuracy'])
- numpy输入
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
optimizer: 训练方法,loss:优化函数,metrics:训练监控
import numpy as np
data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))
val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))
model.fit(data, labels, epochs=10, batch_size=32,
validation_data=(val_data, val_labels))
epochs:训练周期(整个输入数据的一次迭代),batch_size:批次大小 (每次iterate用多少数据迭代)
validation_data:在每个训练周期结束加上显示验证集的数据和指标
- dataset输入
# Instantiates a toy dataset instance:
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)
model.fit(dataset, epochs=10)
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_labels))
val_dataset = val_dataset.batch(32)
model.fit(dataset, epochs=10,
validation_data=val_dataset)
评估和预测
# With Numpy arrays
data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))
model.evaluate(data, labels, batch_size=32)
# With a Dataset
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)
model.evaluate(dataset)
result = model.predict(data, batch_size=32)
print(result.shape)
1.4 构建复杂模型
- 函数式API
Types of models:
Multi-input
Multi-output
Models with shared layers
Models with non-sequential data flows
inputs = tf.keras.Input(shape=(32,)) # Returns a placeholder tensor
# A layer instance is callable on a tensor, and returns a tensor.
x = layers.Dense(64, activation='relu')(inputs)
x = layers.Dense(64, activation='relu')(x)
predictions = layers.Dense(10, activation='softmax')(x)
# kernel
model = tf.keras.Model(inputs=inputs, outputs=predictions)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Trains for 5 epochs
model.fit(data, labels, batch_size=32, epochs=5)
- Model subclassing
可以定制自己的model
class MyModel(tf.keras.Model):
def __init__(self, num_classes=10):
super(MyModel, self).__init__(name='my_model')
self.num_classes = num_classes
# Define your layers here.
self.dense_1 = layers.Dense(32, activation='relu')
self.dense_2 = layers.Dense(num_classes, activation='sigmoid')
def call(self, inputs):
# Define your forward pass here,
# using layers you previously defined (in `__init__`).
x = self.dense_1(inputs)
return self.dense_2(x)
- Custom layers
可以定制自己的层
class MyLayer(layers.Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
def get_config(self):
base_config = super(MyLayer, self).get_config()
base_config['output_dim'] = self.output_dim
return base_config
@classmethod
def from_config(cls, config):
return cls(**config)
1.5 Callbacks
四种ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard
https://www.tensorflow.org/guide/summaries_and_tensorboard
callbacks = [
# Interrupt training if `val_loss` stops improving for over 2 epochs
tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
# Write TensorBoard logs to `./logs` directory
tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(data, labels, batch_size=32, epochs=5, callbacks=callbacks,
validation_data=(val_data, val_labels))
1.6 Save and restore
save just the weights values
save just the model configuration
save the entire model:
# Create a trivial model
model = tf.keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(32,)),
layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, batch_size=32, epochs=5)
# Save entire model to a HDF5 file
model.save('my_model.h5')
# Recreate the exact same model, including weights and optimizer.
model = tf.keras.models.load_model('my_model.h5')
1.7 Eager execution
有利于测试model subclassing和custom layers
1.8 Distribution
多GPU
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = tf.keras.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10,)))
model.add(layers.Dense(1, activation='sigmoid'))
optimizer = tf.keras.optimizers.SGD(0.2)
model.compile(loss='binary_crossentropy', optimizer=optimizer)
model.summary()
2 Keras functional API
3 Train and evaluate
3.1 Using buid-in training and evaluation loops
Specifying a loss, metrics, and an optimizer
Custom losses/metrics
training and evaluation from numpy
training and evaluation from Datasets
passing data to mulit-input, multi-output models
Callbacks
Visualizing loss and metrics during training
网友评论