美文网首页Kafka相关
Kafka 消费者旧版低级 API

Kafka 消费者旧版低级 API

作者: CoderJed | 来源:发表于2018-06-29 18:41 被阅读1433次

    Kafka 消费者总共有 3 种 API,新版 API、旧版高级 API、旧版低级 API,新版 API 是在 kafka 0.9 版本后增加的,推荐使用新版 API,但由于旧版低级 API 可以对消息进行更加灵活的控制,所有在实际开发中使用的也较多,本文讨论消费者旧版低级 API 的基本使用。

    旧版低级 API 处理以下场景更为方便:

    • 消息重复消费
    • 添加事务管理机制,保证 Exactly Once
    • 消费指定分区或者指定分区的某些片段

    使用旧版低级 API的步骤:

    • 获取你要读取的topic的partition的元数据信息
    • 找到这个partition的leader节点,然后通过这个leader节点找到存有这个partition副本的节点
    • 构造消费请求,获取数据并处理
    • 手动管理偏移量
    • 识别并处理分区leader节点的改变

    以下示例代码实现的功能是,指定主题和分区,从该分区的第一条记录开始读取数据,打印到控制台:

    package com.bonc.rdpe.kafka110.consumer;
    
    import java.nio.ByteBuffer;
    import java.util.Arrays;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    
    import kafka.api.FetchRequest;
    import kafka.api.FetchRequestBuilder;
    import kafka.api.PartitionOffsetRequestInfo;
    import kafka.common.ErrorMapping;
    import kafka.common.TopicAndPartition;
    import kafka.javaapi.FetchResponse;
    import kafka.javaapi.TopicMetadataRequest;
    import kafka.javaapi.TopicMetadataResponse;
    import kafka.javaapi.OffsetRequest;
    import kafka.javaapi.OffsetResponse;
    import kafka.javaapi.PartitionMetadata;
    import kafka.javaapi.TopicMetadata;
    import kafka.javaapi.consumer.SimpleConsumer;
    import kafka.message.MessageAndOffset;
    
    /**
     * @Title SimpleConsumerTest.java 
     * @Description Kafka旧版消费者API——低级API
     * @Author YangYunhe
     * @Date 2018-06-26 13:16:29
     */
    public class SimpleConsumerTest {
        
        // broker list
        private static final String BROKER_LIST = "192.168.42.101,192.168.42.102,192.168.42.103";
        // 连接超时时间:1min
        private static final int TIME_OUT = 60 * 1000;
        // 读取消息缓存区大小:1M
        private static final int BUFFER_SIZE = 1024 * 1024;
        // 每次获取消息的条数
        private static final int FETCH_SIZE = 100000;
        // 发生错误时重试的次数
        private static final int RETRIES_TIME = 3;
        // 允许发生错误的最大次数
        private static final int MAX_ERROR_NUM = 3;
        
        /**
         * 获取指定主题指定分区的元数据
         */
        private PartitionMetadata fetchPartitionMetadata(List<String> brokerList, int port, String topic, int partitionId) {
            SimpleConsumer consumer = null;
            TopicMetadataRequest metadataRequest = null;
            TopicMetadataResponse metadataResponse = null;
            List<TopicMetadata> topicMetadatas = null;
            
            try{
                /*
                 * 循环是因为不确定传入的partition的leader节点是哪个
                 */
                for(String host : brokerList) {
                    // 1. 构建一个消费者,它是获取元数据的执行者
                    consumer = new SimpleConsumer(host, port, TIME_OUT, BUFFER_SIZE, "dev3-client-001");  // 最后一个参数是 clientId
                    // 2. 构造请求主题元数据的 request
                    metadataRequest = new TopicMetadataRequest(Arrays.asList(topic));
                    // 3. 发送请求获取元数据
                    try {
                        metadataResponse = consumer.send(metadataRequest);
                    } catch (Exception e) {
                        System.out.println("get TopicMetadataResponse failed!");
                        e.printStackTrace();
                        continue;
                    }
                    // 4. 获取主题元数据列表
                    topicMetadatas = metadataResponse.topicsMetadata();
                    // 5. 提取主题元数据列表中指定分区的元数据信息
                    for(TopicMetadata topicMetadata : topicMetadatas) {
                        for(PartitionMetadata partitionMetadata : topicMetadata.partitionsMetadata()) {
                            if(partitionMetadata.partitionId() != partitionId) {
                                continue;
                            } else {
                                return partitionMetadata;
                            }
                        }
                    }
                }
            } catch (Exception e) {
                System.out.println("Fetch PartitionMetadata failed!");
                e.printStackTrace();
            } finally {
                if(consumer != null) {
                    consumer.close();
                }
            }
            
            return null;
            
        }
        
        /**
         * 根据分区的元数据信息获取它的leader节点
         */
        private String getLeader(PartitionMetadata metadata) {
            if(metadata.leader() == null) {
                System.out.println("can not find partition" + metadata.partitionId() + "'s leader!");
                return null;
            }
            return metadata.leader().host();
        }
        
        /**
         * 重新寻找partition的leader节点的方法
         */
        private String findNewLeader(List<String> brokerList, String oldLeader, String topic, int partition, int port) throws Exception {
            for (int i = 0; i < 3; i++) {
                boolean goToSleep = false;
                PartitionMetadata metadata = fetchPartitionMetadata(brokerList, port, topic, partition);
                if (metadata == null) {
                    goToSleep = true;
                } else if (metadata.leader() == null) {
                    goToSleep = true;
                } else if (oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
                    // 这里考虑到 zookeeper 还没有来得及重新选举 leader 或者在故障转移之前挂掉的 leader 又重新连接的情况
                    goToSleep = true;
                } else {
                    return metadata.leader().host();
                }
                if (goToSleep) {
                    Thread.sleep(1000);
                }
            }
            System.out.println("Unable to find new leader after Broker failure!");
            throw new Exception("Unable to find new leader after Broker failure!");
        }
        
        /**
         * 获取指定主题指定分区的消费偏移量
         */
        private long getOffset(SimpleConsumer consumer, String topic, int partition, long beginTime, String clientName) {
            TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
            Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<>();
            /*
             * PartitionOffsetRequestInfo(beginTime, 1)用于配置获取offset的策略
             * beginTime有两个值可以取
             *     kafka.api.OffsetRequest.EarliestTime(),获取最开始的消费偏移量,不一定是0,因为segment会删除
             *     kafka.api.OffsetRequest.LatestTime(),获取最新的消费偏移量
             * 另一个参数 1 暂不清楚有什么意义
             */
            requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(beginTime, 1));
            // 构造获取offset的请求
            OffsetRequest request = new OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
            OffsetResponse response = consumer.getOffsetsBefore(request);
            if(response.hasError()) {
                System.out.println("get offset failed!" + response.errorCode(topic, partition));
                return -1;
            }
            long[] offsets = response.offsets(topic, partition);
            if(offsets == null || offsets.length == 0) {
                System.out.println("get offset failed! offsets is null");
                return -1;
            }
            return offsets[0];
        }
        
        /**
         * 处理数据的方法
         */
        public void consume(List<String> brokerList, int port, String topic, int partition) {
            SimpleConsumer consumer = null;
            try {
                // 1. 获取分区元数据信息
                PartitionMetadata metadata = fetchPartitionMetadata(brokerList, port, topic, partition);
                if(metadata == null) {
                    System.out.println("can not find metadata!");
                    return;
                }
                // 2. 找到分区的leader节点
                String leaderBroker = getLeader(metadata);
                String clientId = topic + "-" + partition + "-" + "client";
                
                // 3. 创建一个消费者用于消费消息
                consumer = new SimpleConsumer(leaderBroker, port, TIME_OUT, BUFFER_SIZE, clientId);
                
                // 4. 配置获取offset的策略为,获取分区最开始的消费偏移量
                long offset = getOffset(consumer, topic, partition, kafka.api.OffsetRequest.EarliestTime(), clientId);
                
                int errorCount = 0;
                FetchRequest request = null;
                FetchResponse response = null;
                
                while(offset > -1) {
                    // 运行过程中,可能因为处理错误,把consumer置为 null,所以这里需要再实例化
                    if(consumer == null) {
                        consumer = new SimpleConsumer(leaderBroker, port, TIME_OUT, BUFFER_SIZE, clientId);
                    }
                    // 5. 构建获取消息的request
                    request = new FetchRequestBuilder().clientId(clientId).addFetch(topic, partition, offset, FETCH_SIZE).build();
                    // 6. 获取响应并处理
                    response = consumer.fetch(request);
                    if(response.hasError()) {
                        errorCount ++;
                        if(errorCount > MAX_ERROR_NUM) {
                            break;
                        }
                        short errorCode = response.errorCode(topic, partition);
                        
                        if(ErrorMapping.OffsetOutOfRangeCode() == errorCode) {
                            // 如果是因为获取到的偏移量无效,那么应该重新获取
                            // 这里简单处理,改为获取最新的消费偏移量
                            offset = getOffset(consumer, topic, partition, kafka.api.OffsetRequest.LatestTime(), clientId);
                            continue;
                        } else if (ErrorMapping.OffsetsLoadInProgressCode() == errorCode) {
                            Thread.sleep(300000);
                            continue;
                        } else {
                            consumer.close();
                            consumer = null;
                            // 更新leader broker
                            leaderBroker = findNewLeader(brokerList, leaderBroker, topic, partition, port); 
                            continue;
                        }
                    // 如果没有错误
                    } else {
                        errorCount = 0;  // 清空错误记录
                        long fetchCount = 0;
                        // 处理消息
                        for(MessageAndOffset messageAndOffset : response.messageSet(topic, partition)) {
                            long currentOffset = messageAndOffset.offset();
                            if(currentOffset < offset) {
                                System.out.println("get an old offset[" + currentOffset + "], excepted offset is offset[" + offset + "]");
                                continue;
                            }
                            offset = messageAndOffset.nextOffset();
                            ByteBuffer payload = messageAndOffset.message().payload();
                            byte[] bytes = new byte[payload.limit()];
                            payload.get(bytes);
                            
                            // 把消息打印到控制台
                            System.out.println("message: " + new String(bytes, "UTF-8") + ", offset: " + messageAndOffset.offset());
                            
                            fetchCount++;
                        }
                        
                        if (fetchCount == 0) {
                            Thread.sleep(1000);
                        }
                        
                    }
                }
                
            } catch (Exception e) {
                System.out.println("exception occurs when consume message");
                e.printStackTrace();
            } finally {
                if (consumer != null) {
                    consumer.close();
                }
            }
        }
        
        public static void main(String[] args) {
            SimpleConsumerTest sct = new SimpleConsumerTest();
            sct.consume(Arrays.asList(BROKER_LIST.split(",")), 9092, "dev3-yangyunhe-topic001", 0);
        }
        
    }
    

    运行结果为:

    message: t13229543255|13229543255|2017-10-04 05:04:19|2017-10-04 05:04:19|01001|x13229543255|75165|UaiOKGnr|wx|1003|0, offset: 0
    message: t15554236866|15554236866|2017-10-04 20:50:36|2017-10-04 20:50:36|01001|x15554236866|66815|cLhDPEfl|wx|1001|0, offset: 1
    message: t13053448010|13053448010|2018-04-01 18:22:27|2018-04-01 18:22:27|01001|x13053448010|67860|UTpzF05R|wx|1005|1, offset: 2
    message: t13016064334|13016064334|2017-07-01 15:10:31|2017-07-01 15:10:31|01001|x13016064334|78549|nzbMDJXs|wx|1005|0, offset: 3
    message: t13025257802|13025257802|2018-01-21 18:49:55|2018-01-21 18:49:55|01001|x13025257802|39067|zOHLBrje|wx|1003|0, offset: 4
    
    ......
    

    相关文章

      网友评论

        本文标题:Kafka 消费者旧版低级 API

        本文链接:https://www.haomeiwen.com/subject/zwtzyftx.html