商业智能 BI ( Business Intelligence) 简单来说就是一套由数据仓库、查询报表、数据分析等组成的数据类技术解决方案,将企业中不同业务系统( ERP、CRM、OA、BPM 等,包括自己开发的业务系统软件)中的数据进行有效的整合,并利用合适的查询和分析工具快速并且准确的为企业提供报表展现与分析,为企业提供决策支持。
商业智能概述
商业智能 BI 的核心主线是什么? 主线就是通过构建数据仓库平台,有效的整合数据并组织起来为分析决策提供支持并实现其价值。还有一种解释就是:将数据转变为信息,信息支撑决策,决策产生价值。
商业智能 BI 的三个分析层次
第一个层次是报表的常规呈现。所谓常规呈现指的是使用柱状图、饼状图、折线图、二维表格等图形可视化的方式将企业日常的业务数据(财务、供应链、人力、运营等)全面呈现出来,再通过各种维度(看数据的角度)筛选、关联、跳转、钻透等方式查看各类分析指标,业务分析图表按照主题划分,图表之间存在一定的逻辑关系。
第二个层次是数据的”异常”分析。我们对 “异常”的解释是:通过可视化报表呈现,我们发现了一些数据指标反映出来的情况超出了我们的日常经验判断,一种是我们所追求的的正向”异常”,一种是我们极力避免的负向“异常”。
商业智能 BI 是先通过第一层的报表呈现,将很多业务运营情况直观的反映出来,让用户可以直观的看到在我们经验之外的数据表现情况。商业智能 BI 在这里体现的价值就是要对这些 “异常” 数据进行有目的的分析,通过相关联的维度、指标使用钻透、关联等分析方式探索出可能存在的原因。
在这个层次中,可视化报表的分析是带着问题找问题的,通过一次或者多次的维度和指标图表构建,逐步形成了一种比较可靠的、固化的分析模型。这个阶段的用户不再是被动接受来自图表中反映的信息,而是通过”异常”数据来定位到背后的一个业务问题,数据和业务在这个层次开始有了联系,数据图表之间的逻辑性更强。
第三个层次是业务建模分析。业务建模分析通常是由精通业务的用户提出,通过合理的建模找出业务中可能存在的问题,将其反映出来并最后要回归到业务,形成决策并不断优化的一个过程。业务建模可简单,可由一个或多个图表组成,也可复杂,通过一组或多组数据图表支撑。业务建模简单来说也可以理解为一种业务分析的逻辑思维模型,只是用数据、图表化的方式将它们有效组织起来去验证我们对业务分析的逻辑判断。
业务建模分析区别于第一层的全面数据呈现和第二层的异常分析和被动分析,它是一种更深层次的业务数据的主动设计和探索分析。这层分析的提出更加深入业务,围绕一个一个业务分析场景展开,对业务的认知要足够深。
对商业智能 BI 的总结
商业智能 BI 的表象是可视化分析报表的呈现,但它的本质还是业务问题、管理问题。商业智能 BI 数据分析来源于业务,通过数据呈现发现业务问题再次回到业务优化业务提升业务运营的一个过程,这就是在商业智能 BI 中数据到信息、信息产生决策、决策产生价值的真正内涵。
网友评论