美文网首页
ML- 分类算法模型性能评估(准确度accuracy)

ML- 分类算法模型性能评估(准确度accuracy)

作者: 倪桦 | 来源:发表于2023-01-24 22:16 被阅读0次

    在部署一个算法模型到生产环境之前,有必要对模型的性能进行测试;通常,对于准备投入模型训练的原始数据集拆分成训练数据(70%~80%)和测试数据(20%-30%)来训练模型和测试模型性能。


    train_test_split

    ①自划分

    np.random.seed(666)
    shuffle_index = np.random.permutation(len(X))
    train_index = shuffle_index[:int(len(shuffle_index)* .8)]
    test_index  = shuffle_index[int(len(shuffle_index)* .8):]
    
    
    Train_X = X[train_index]
    Train_Y = Y[train_index]
    
    Test_X = X[test_index]
    Test_Y = Y[test_index]
    

    ②scikit-learn中的train_test_split

    from sklearn.model_selection import train_test_split
    Train_X,Test_X,Train_Y,Test_Y = train_test_split(X,Y,test_size= 0.2,random_state=666)
    

    分类效果评估

    分类准确度(accuracy ): 统计测试集的模型预测结果与真实标签的一致度.sum( Y_predict == Test_Y )/len(Test_y),该方法在scikit-learn中也有封装好的函数:

    from sklearn.metrics import accuracy_score
    accuracy_score(Test_Y ,Y_predict)
    

    相关文章

      网友评论

          本文标题:ML- 分类算法模型性能评估(准确度accuracy)

          本文链接:https://www.haomeiwen.com/subject/aatlhdtx.html