通常的batch
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2. backward
optimizer.zero_grad() # reset gradient
loss.backward()
optimizer.step()
实现梯度累加
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2.1 loss regularization
loss = loss/accumulation_steps
# 2.2 back propagation
loss.backward()
# 3. update parameters of net
if((i+1)%accumulation_steps)==0:
# optimizer the net
optimizer.step() # update parameters of net
optimizer.zero_grad() # reset gradient
1、获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
2、loss.backward() 反向传播,计算当前梯度;
3、多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
4、梯度累加了一定次数后,先 optimizer.step() 根据累计的梯度更新网络参数,然后 optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;
总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果 accumulation_steps 为8,则batchsize '变相' 扩大了8倍,是我们这种乞丐实验室解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。
更多内容:
pytorch梯度累加
网友评论