美文网首页
Java线程池源码分析

Java线程池源码分析

作者: DQ大神奇 | 来源:发表于2019-01-23 18:14 被阅读0次

    1. 概述

    假如没有线程池,当存在较多的并发任务的时候,每执行一次任务,系统就要创建一个线程,任务完成后进行销毁,一旦并发任务过多,频繁的创建和销毁线程将会大大降低系统的效率。线程池能够对线程进行统一的分配,通过固定数量的线程来负责处理任务,避免了频繁的创建和销毁对象,使线程能够重复的利用,执行多个任务。

    2.Java线程池的结构

    线程池相关类与接口.png
    • Executor:最顶层接口,仅有execute方法。真正的线程池接口应该是它的子接口ExecutorService
    • ExecutorService:主要对Executor接口补充了一些方法,例如shutdown()、submit()等方法
    • ThreadPoolExecutor:ExecutorService的默认实现,作为自定义线程池的主要类。
    • ScheduledExecutorService:用来解决任务重复执行的问题
    • ScheduledThreadPoolExecutor:继承ThreadPoolExecutorScheduledExecutorService接口实现,周期性任务调度的类实现。

    3.ThreadPoolExecutor

    ThreadPoolExecutor是ExecutorService的默认实现,其功能也最为基础,通过对该类的源码解析来了解整个线程池的工作机制。

    ThreadPoolExecutor最完整的构造器

    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.acc = System.getSecurityManager() == null ?
                    null :
                    AccessController.getContext();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    
    • corePoolSize :线程池中保存的线程个数,包含了空闲线程
    • maximumPoolSize :为线程池中最多允许线程个数
    • keepAliveTime:当线程产生的数量多于core时候,空闲线程在这个时间如果没有新任务将被终止
    • unit :keepAliveTime的时间单位,可直接使用TimeUnit枚举类
    • workQueue :线程工作任务队列。任务被执行前保存至工作队列 常用的有ArrayBlockingQueue、LinkedBlockingQuene、priorityBlockingQuene等等
    • threadFactory :执行程序创建新线程时使用的工厂,默认为DefaultThreadFactory
    • handler:由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序,主要有四种AbortPolicy、CallerRunsPolicy、DiscardOldestPolicy、DiscardPolicy

    3.1 工作流程图如图

    image.png

    3.2 源码分析

    首先,来看一下几个变量定义

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    

    线程池使用一个整型变量的高三位作为线程池的状态。
    高位111为RUNNING 注:RUNNING为负数,最小
    高位000为SHUTDOWN
    高位001表示STOP
    高位010表示TIDYING
    高位100表示TERMINATED
    workerCountOf方法用来取低29位的数值,返回线程池的线程数。
    runStateOf方法则用来取高3位的数值,返回当前线程池的状态。
    然后,来看用于提交任务的submit方法。

    public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    

    该方法将Runnable进行了封装,我们这里先不考虑,先看看执行的关键方法execute();

    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) { // workerCountOF()方法获取当前线程数量,若线程数量小于核心线程数的时候 直接进入addWorker 启动运行
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            // 上面是当线程数量小于core的时候,下面是针对线程数量大于core
            if (isRunning(c) && workQueue.offer(command)) { //若线程池处于运行状态,则添加到阻塞队列中
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command)) //recheck 若线程池已经关闭,就remove任务
                    reject(command); //执行拒绝策略
                else if (workerCountOf(recheck) == 0) //线程池处于running状态,但是没有线程,则创建线程
                    addWorker(null, false);
            }
            else if (!addWorker(command, false)) // 线程池关闭或者往workQueue提交任务失败,则reject任务
                reject(command);
        }
    

    execute方法中可以看到,addWork作为一个创建线程并执行任务的重要方法

    private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && // rs >= SHUTDOWN 说明线程池不是running; 当线程池关闭,任务为null,workQueue不为空的时候才可以往下进行 
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize)) // core为true 则超过core添加失败
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
            //到这里说明能够创建线程执行任务
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                w = new Worker(firstTask);
                final Thread t = w.thread; //获取 worker 中的线程对象,Worker的构造方法会调用 ThreadFactory 来创建一个新的线程
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock(); //上锁
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) { // 线程池运行或者 线程池关闭 任务为null
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w); //添加进HashSet
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;  //添加成功
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {  //如果添加成功则启动线程
                        t.start();  
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)  //启动失败则把w从works中移除
                    addWorkerFailed(w);  
            }
            return workerStarted;
        }
    

    接下来看看Work类中的run方法,中的runWorker方法

    public void run() {
        runWorker(this);
    }
    final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // 释放锁,允许中断
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) { //getTask方法不断从阻塞队列中获取任务
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run(); //执行任务的run方法
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    
    

    3.3 三种常见线程池

    Executors类中为我们提供了集中常见的线程池,分别有FixedThreadPool、SingleThreadExecutor、CachedThreadPool三种

    public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }
    

    FixedThreadPool顾名思义 可以设置固定数量的线程池。但是LinkedBlockingQueue是无界阻塞队列,队列可存放的大小为Integer.MAX_VALUE,因此maximumPoolSize和keepAliveTime将会是个无用参数,拒绝策略也没用

    public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }
    

    同上,不过线程池大小仅为1

    public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }
    

    线程池的线程数可达到Integer.MAX_VALUE。使用SynchronousQueue作为阻塞队列。newCachedThreadPool在没有任务执行时,当线程的空闲时间超过keepAliveTime,会自动释放线程资源,当提交新任务时,如果没有空闲线程,则创建新线程执行任务,会导致一定的系统开销;

    相关文章

      网友评论

          本文标题:Java线程池源码分析

          本文链接:https://www.haomeiwen.com/subject/acarjqtx.html