美文网首页java集合
03_HashMap源码剖析

03_HashMap源码剖析

作者: T_log | 来源:发表于2020-11-12 00:02 被阅读0次

    一、 基本原理

    1. HashMap底层基于数组+链表的数据结构,当出现hash冲突的时候,就将冲突的节点挂在链表尾部
    2. JDK8以后,为了提高性能,解决hash冲突采用了链表+红黑树,如果只有链表的话,他的查询时间复杂度为O(n),而红黑树时间复杂度为O(log(n)

    二、红黑树简述

    1. 红黑树是二叉查找树,左小右大,根据这个规则可以快速查找某个值
    2. 普通的二叉查找树,是有可能出现瘸子的情况,只有一条腿,不平衡了,导致查询性能变成O(n),线性查询了
    3. 红黑树,红色和黑色两种节点,会有条件限制去保证树是平衡的,不会出现瘸腿的情况
    4. 如果插入节点的时候破坏了红黑树的规则和平衡,会自动重新平衡,变色(红 <-> 黑),旋转,左旋转,右旋转
    1. 如果要完全搞得红黑树,还是需要花点时间和精力的,我们研究HashMap的话,重点放在源码上

    三、核心成员变量

    /**
    * HashMap里的数组默认大小,16
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
    
    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    
    /**
    * 默认加载因子,0.75f,当数组里的元素达到 16 *0.75 = 12的时候,就会进行扩容
    * 这个参数我们一般不会去修改,采用默认的就好
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    
    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;
    
    
    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    
    
    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    
    /**
    * 这个Node其实就是代表数组里的key-value对,key的hash值,key,vlue,以及链表指向的下一个指针
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    
    
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    
    
    /**
    * 代表map的底层的数组
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;
    
    
    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;
    
    
    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;
    
    

    四、hashmap如何降低hash冲突的算法

    /**
    * 将key-value放入到map中,如果这个key已经存在的话,就会将原来的值替换掉
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    1. 针对这个hash算法(h = key.hashCode()) ^ (h >>> 16),首先h为一个Int类型的变量
    2. 假设这个hashCode为1111 1111 1111 1111 1111 1010 0111 1100,那么h>>>16,就是将1111 1111 1111 1111 1111 1010 0111 1100右移16位

    右移16位后为0000 0000 0000 0000 1111 1111 1111 1111
    然后将右移16位的h和原来的h进行异或运算

    1111 1111 1111 1111 1111 1010 0111 1100
    ^0000 0000 0000 0000 1111 1111 1111 1111
    1111 1111 1111 1111 0000 0101 1000 0011

    这样计算,其实就是将h的高16位和低16位进行一个异或运算,保证同时将高16位和低16位的特征同时纳入运算。通过这样的方式算出来的hash值,可以降低hash冲突的概率

    五、put操作以及hash寻址算法

    1. 这里的源码细节中的一些参数属于核心,捋清楚这些参数是读懂源码的关键
    2. 我们知道,hashmap底层是基于数组和链表实现的。当出现hash冲突的时候,用链表来解决hash冲突,但是链表的get时间复杂度是O(n),正常来说,table[i]数组索引直接定位的方式的话,O(1)
    3. 如果链表,大量的key冲突,会导致get()操作,性能急剧下降,导致很多的问题
    4. JDK 1.8以后人家优化了这块东西,会判断,如果链表的长度达到8的时候,那么就会将链表转换为红黑树,如果用红黑树的话,get()操作,即使对一个很大的红黑树进行二叉查找,那么时间复杂度会变成O(logn),性能会比链表的O(n)得到大幅度的提升
    5. 新的数组是老数组的大小的两倍
    6. 扩容过以后,会判断一下,如果是一个链表里的元素的话,那么要么是直接放在新数组的原来的那个index,要么就是原来的index + oldCap

    ···
    public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
    }

    /**

    • Implements Map.put and related methods

    • @param hash hash for key

    • @param key the key

    • @param value the value to put

    • @param onlyIfAbsent if true, don't change existing value

    • @param evict if false, the table is in creation mode.

    • @return previous value, or null if none
      */
      final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
      boolean evict) {

      Node<K,V>[] tab; Node<K,V> p; int n, I;
      // 新增一个map的table是空的,所以会走if逻辑
      if ((tab = table) == null || (n = tab.length) == 0)
      // 这里会走resize方法,resize第一次进来创建一个默认大小16的空数组
      // 这样n就是16
      n = (tab = resize()).length;
      // 这行代码是计算key在数组中的位置的关键
      // 16-1 = 15 用15和上面计算的hash值进行与运算
      // 上面的hash:1111 1111 1111 1111 0000 0101 1000 0011
      // 15的二进制:0000 0000 0000 0000 0000 0000 0000 1111
      // 所以结果为:index = 3
      // 这样的话,其实就是在数组的第三个位置放入这个key-value对
      // 这里采用的是二进制的与运算,而不是取模,是因为性能比取模运算要高很多,而且只有每次扩容的时候
      // 数组的大小是2的n次方就可以保证二进制和取模运算的结果一样了
      if ((p = tab[i = (n - 1) & hash]) == null)
      // 这里的逻辑,就是通过hash寻找之后定位到的index位置上是空的,那么就可以直接将元素放到index的数组中
      tab[i] = newNode(hash, key, value, null);
      else {
      // 走到else逻辑后,说明出现了hash冲突
      Node<K,V> e; K k;
      if (p.hash == hash &&
      ((k = p.key) == key || (key != null && key.equals(k))))
      // 这里的条件,说明key相同,那么直接覆盖原来的value,而这里会把e指向index这个位置的node
      e = p;
      else if (p instanceof TreeNode)
      e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
      else {
      for (int binCount = 0; ; ++binCount) {
      if ((e = p.next) == null) {
      // 这里是说,如果链表的长度大于了8,达到9时,那么就要将这个链表转换为一个红黑树的数据结构
      p.next = newNode(hash, key, value, null);
      if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
      treeifyBin(tab, hash);
      break;
      }
      if (e.hash == hash &&
      ((k = e.key) == key || (key != null && key.equals(k))))
      break;
      p = e;
      }
      }
      //
      if (e != null) { // existing mapping for key
      // oldValue原来老的值
      V oldValue = e.value;
      if (!onlyIfAbsent || oldValue == null)
      e.value = value;
      // value代表新的值,也就是将数组那个位置的Node的value设置为了新的value
      afterNodeAccess(e);

           return oldValue;
       }
      

      }
      ++modCount;
      if (++size > threshold)
      resize();
      afterNodeInsertion(evict);
      return null;
      }

    /**

    • Initializes or doubles table size. If null, allocates in
    • accord with initial capacity target held in field threshold.
    • Otherwise, because we are using power-of-two expansion, the
    • elements from each bin must either stay at same index, or move
    • with a power of two offset in the new table.
    • @return the table
      */
      final Node<K,V>[] resize() {
      // 第一次进来,table为空
      // 我们不用一行一行的分析,其实这里第一次put方法进来的时候,就是创建一个空的
      // 默认大小16的空数组
      Node<K,V>[] oldTab = table;
      int oldCap = (oldTab == null) ? 0 : oldTab.length;
      int oldThr = threshold;
      int newCap, newThr = 0;
      if (oldCap > 0) {
      if (oldCap >= MAXIMUM_CAPACITY) {
      threshold = Integer.MAX_VALUE;
      return oldTab;
      }
      else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
      oldCap >= DEFAULT_INITIAL_CAPACITY)
      newThr = oldThr << 1; // double threshold
      }
      else if (oldThr > 0) // initial capacity was placed in threshold
      newCap = oldThr;
      else { // zero initial threshold signifies using defaults
      newCap = DEFAULT_INITIAL_CAPACITY;
      newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
      }
      if (newThr == 0) {
      float ft = (float)newCap * loadFactor;
      newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
      (int)ft : Integer.MAX_VALUE);
      }
      threshold = newThr;
      @SuppressWarnings({"rawtypes","unchecked"})
      Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
      table = newTab;
      if (oldTab != null) {
      for (int j = 0; j < oldCap; ++j) {
      Node<K,V> e;
      if ((e = oldTab[j]) != null) {
      oldTab[j] = null;
      if (e.next == null)
      newTab[e.hash & (newCap - 1)] = e;
      else if (e instanceof TreeNode)
      ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
      else { // preserve order
      Node<K,V> loHead = null, loTail = null;
      Node<K,V> hiHead = null, hiTail = null;
      Node<K,V> next;
      do {
      next = e.next;
      if ((e.hash & oldCap) == 0) {
      if (loTail == null)
      loHead = e;
      else
      loTail.next = e;
      loTail = e;
      }
      else {
      if (hiTail == null)
      hiHead = e;
      else
      hiTail.next = e;
      hiTail = e;
      }
      } while ((e = next) != null);
      if (loTail != null) {
      loTail.next = null;
      newTab[j] = loHead;
      }
      if (hiTail != null) {
      hiTail.next = null;
      newTab[j + oldCap] = hiHead;
      }
      }
      }
      }
      }
      return newTab;
      }
      ···

    五、get和remove

    get和remove的逻辑思路其实是类似的

    ···
    public V get(Object key) {
    Node<K,V> e;
    // hash(key)首先找到key对应的index,然后使用getNode方法读取数据
    return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**

    • Implements Map.get and related methods
    • @param hash hash for key
    • @param key the key
    • @return the node, or null if none
      */
      final Node<K,V> getNode(int hash, Object key) {
      Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
      // 如果说通过hash寻址算法找到的index的数据不为空的话
      if ((tab = table) != null && (n = tab.length) > 0 &&
      (first = tab[(n - 1) & hash]) != null) {
      // 先检查是不是链表第一个元素,是的话就直接返回
      if (first.hash == hash && // always check first node
      ((k = first.key) == key || (key != null && key.equals(k))))
      return first;
      if ((e = first.next) != null) {
      if (first instanceof TreeNode)
      // 如果链表是红黑树的话,使用红黑树的二分查找读取数据
      return ((TreeNode<K,V>)first).getTreeNode(hash, key);
      do {
      // 否则遍历链表
      if (e.hash == hash &&
      ((k = e.key) == key || (key != null && key.equals(k))))
      return e;
      } while ((e = e.next) != null);
      }
      }
      return null;
      }

    /**

    • Removes the mapping for the specified key from this map if present.
    • @param key key whose mapping is to be removed from the map
    • @return the previous value associated with <tt>key</tt>, or
    •     <tt>null</tt> if there was no mapping for <tt>key</tt>.
      
    •     (A <tt>null</tt> return can also indicate that the map
      
    •     previously associated <tt>null</tt> with <tt>key</tt>.)
      

    */
    public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
    null : e.value;
    }

    /**

    • Implements Map.remove and related methods
    • @param hash hash for key
    • @param key the key
    • @param value the value to match if matchValue, else ignored
    • @param matchValue if true only remove if value is equal
    • @param movable if false do not move other nodes while removing
    • @return the node, or null if none
      */
      final Node<K,V> removeNode(int hash, Object key, Object value,
      boolean matchValue, boolean movable) {
      Node<K,V>[] tab; Node<K,V> p; int n, index;
      if ((tab = table) != null && (n = tab.length) > 0 &&
      (p = tab[index = (n - 1) & hash]) != null) {
      Node<K,V> node = null, e; K k; V v;
      if (p.hash == hash &&
      ((k = p.key) == key || (key != null && key.equals(k))))
      node = p;
      else if ((e = p.next) != null) {
      if (p instanceof TreeNode)
      node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
      else {
      do {
      if (e.hash == hash &&
      ((k = e.key) == key ||
      (key != null && key.equals(k)))) {
      node = e;
      break;
      }
      p = e;
      } while ((e = e.next) != null);
      }
      }
      if (node != null && (!matchValue || (v = node.value) == value ||
      (value != null && value.equals(v)))) {
      if (node instanceof TreeNode)
      ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
      else if (node == p)
      tab[index] = node.next;
      else
      p.next = node.next;
      ++modCount;
      --size;
      afterNodeRemoval(node);
      return node;
      }
      }
      return null;
      }

    ···

    总结

    1. hash算法:为什么要高位和低位做异或运算,这样可以保证说高16位和低16位都参与了hash寻址
    2. hash寻址没有使用取模而是使用了位运算,因为位运算的性能要远远的高于取模
    3. hash冲突后数据挂在链表上,当链表的数量达到8以上后,就会将链表升级为红黑树,避免读取数据的时候,遍历整个链表。

    相关文章

      网友评论

        本文标题:03_HashMap源码剖析

        本文链接:https://www.haomeiwen.com/subject/aecubktx.html