美文网首页
学习 Bloom filter

学习 Bloom filter

作者: madao756 | 来源:发表于2022-02-28 10:30 被阅读0次

    误判率的推导

    • 前提:
    1. 数组长度 m
    2. 有 k 个 hash 函数,每个 hash 函数彼此独立(老实说,彼此独立这个条件怎么达到我也不太清楚,以及或许有其他的前提条件我也不太清楚)
    3. 用 n 个样本空间
    • 推导过程

    第一部分:

    1. 经过一个 hash 函数以后某一位置为 0 的概率是 1 - \frac{1}{m}

    2. 经过 k 个 hash 函数以后某一位置为 0 的概率是 (1 - \frac{1}{m})^{k}

    3. 经过 n 个样本以后某一位置为 0 的概率是 (1 - \frac{1}{m})^{nk}

    4. 因此经过 n 个样本以后某一位为 1 的概率是 1 - (1 - \frac{1}{m})^{nk}

    5. 现在再来一个新的样本,全选到 1 的概率是 (1 - (1 - \frac{1}{m})^{nk})^{k}

    第二部分,上面先推导到这里接下来需要推导一个别的:

    1. 这是 e 的推导:\lim_{x \to \infty} (1 + \frac{1}{x}) ^ x = e
    2. 将 -x 替换 x lim_{(-x) \to \infty}(1 + \frac{1}{-x})^{-x} = e
    3. lim_{(-x) \to \infty}(1 + \frac{1}{-x})^{-x} = e
    4. lim_{x \to \infty}(1 - \frac{1}{x})^x = \frac{1}{e}

    我们再从第一部分的第五步继续向后:

    1. 变形得:(1 - [1 - (\frac{1}{m})^{m}]^{nk/m})^{k}
    2. 对于大 m 约等于:(1 - e^{-nk/m})^{k}

    所以针对大 m,误报率约为:(1 - e^{-nk/m})^{k}

    我们通常要根据 n 和 m 推导合适的 hash 个数,为:k = \frac{m}{n}ln2

    如果需要根据误报率来推导,此时 k = \frac{m}{n}ln2,此时误报率 {\displaystyle \varepsilon =\left(1-e^{-({\frac {m}{n}}\ln 2){\frac {n}{m}}}\right)^{{\frac { m}{n}}\ln 2}}。可以简写为:

    {\displaystyle \ln \varepsilon =-{\frac {m}{n}}\left(\ln 2\right)^{2}.}

    这导致:

    {\displaystyle m=-{\frac {n\ln \varepsilon }{(\ln 2)^{2}}}}

    所以 m 和 n 的最佳比值此时为:

    {\displaystyle {\frac {m}{n}}=-{\frac {\log _{2}\varepsilon }{\ln 2}}\approx -1.44\log _{2}\varepsilon }

    后面的部分我都是摘自 wiki:https://en.wikipedia.org/wiki/Bloom_filter。根据这些我们就可以实现自己的 Bloom filter。

    • 参考

    https://en.wikipedia.org/wiki/Bloom_filter

    实现

    我们在实现的时候前提条件通常是:

    • 假阳性 p 概率是多少
    • 要存的样本空间多大

    要求的就是上面公式里的 k 和 m。

    • m 告诉我们需要多少的 bit 位
    • k 告诉我们需要多少个 hash 函数

    按照公式:

    • m = -1.44nlog_{2}p

    • k = \frac{m}{n}ln2

    大概实现如下:

    // bloom.go
    // Copyright 2021 hardcore-os Project Authors
    //
    // Licensed under the Apache License, Version 2.0 (the "License")
    // you may not use this file except in compliance with the License.
    // You may obtain a copy of the License at
    //
    // http://www.apache.org/licenses/LICENSE-2.0
    //
    // Unless required by applicable law or agreed to in writing, software
    // distributed under the License is distributed on an "AS IS" BASIS,
    // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    // See the License for the specific language governing permissions and
    // limitations under the License.
    
    package utils
    
    import "math"
    
    // Filter is an encoded set of []byte keys.
    type Filter []byte
    
    // MayContainKey _
    func (f Filter) MayContainKey(k []byte) bool {
        return f.MayContain(Hash(k))
    }
    
    func (f Filter) K() uint8 {
        return f[len(f) - 1]
    }
    
    // get 根据 hash 值得到 filter 中某一位的值
    func (f Filter) get(h uint32) uint8 {
        x, y := posInFilter(h, len(f) - 1)
        return uint8((f[x] >> y) & 1)
    }
    
    // set 根据 hash 值将某一位置 1
    func (f Filter) set(h uint32) {
        x, y := posInFilter(h, len(f) - 1)
        f[x] = f[x] | 1 << y
    }
    
    // MayContain returns whether the filter may contain given key. False positives
    // are possible, where it returns true for keys not in the original set.
    func (f Filter) MayContain(h uint32) bool {
        //Implement me here!!!
        //在这里实现判断一个数据是否在bloom过滤器中
        //思路大概是经过K个Hash函数计算,判读对应位置是否被标记为1
        delta, k := h >> 17 | h << 15, f.K()
        for j := uint8(0); j < k; j ++ {
            if f.get(h) == 0 {
                return false
            }
            h += delta
        }
        return true
    }
    
    // posInFilter 根据 hash 值计算此 hash 在 pos 的哪一个位置
    // h 是 hash 值,filterLen 就是用byte数组中真正做做filter的长度
    func posInFilter(h uint32, filterLen int) (x, y int) {
        nBits :=  uint32(filterLen * 8)
        bitPos := h % nBits
        return int(bitPos / 8), int(bitPos % 8)
    }
    
    // NewFilter returns a new Bloom filter that encodes a set of []byte keys with
    // the given number of bits per key, approximately.
    //
    // A good bitsPerKey value is 10, which yields a filter with ~ 1% false
    // positive rate.
    func NewFilter(keys []uint32, bitsPerKey int) Filter {
        return appendFilter(keys, bitsPerKey)
    }
    
    // BloomBitsPerKey returns the bits per key required by bloomfilter based on
    // the false positive rate.
    func BloomBitsPerKey(numEntries int, fp float64) int {
        //Implement me here!!!
        //阅读bloom论文实现,并在这里编写公式
        //传入参数numEntries是bloom中存储的数据个数,fp是false positive假阳性率
        // 计算 m/n 根据:https://en.wikipedia.org/wiki/Bloom_filter
        return int(-1.44 * math.Log2(fp) + 1)
    }
    
    func appendFilter(keys []uint32, bitsPerKey int) Filter {
        //Implement me here!!!
        //在这里实现将多个Key值放入到bloom过滤器中
        // TODO:系统检查 bitsPerKey
        if bitsPerKey < 0 {
            bitsPerKey = 0
        }
        keyLen := len(keys)
        k := uint8(float64(bitsPerKey) * 0.69)
        if k < 1 {
            k = 1
        }
    
        if k > 30 {
            k = 30
        }
    
        nBits := bitsPerKey * keyLen
    
        // 如果 nBits 太小会有很高的 false positive
        if nBits < 64 {
            nBits = 64
        }
    
        // TODO:检查 nBits 的上界
    
        nBytes := (nBits + 7) / 8
        // 最后一位
        filter := Filter(make([]byte, nBytes + 1))
    
    
        // 向 filter 中放入所有的 key
        for _, h := range keys {
            delta := h >> 17 | h << 15
            for j := uint8(0); j < k; j ++ {
                filter.set(h)
                h += delta
            }
        }
    
        filter[nBytes] = k
        return filter
    }
    
    
    
    // Hash implements a hashing algorithm similar to the Murmur hash.
    func Hash(b []byte) uint32 {
        const (
            seed = 0xbc9f1d34
            m    = 0xc6a4a793
        )
        h := uint32(seed) ^ uint32(len(b))*m
        for ; len(b) >= 4; b = b[4:] {
            h += uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
            h *= m
            h ^= h >> 16
        }
        switch len(b) {
        case 3:
            h += uint32(b[2]) << 16
            fallthrough
        case 2:
            h += uint32(b[1]) << 8
            fallthrough
        case 1:
            h += uint32(b[0])
            h *= m
            h ^= h >> 24
        }
        return h
    }
    
    // bloom_test.go
    // Copyright 2021 hardcore-os Project Authors
    //
    // Licensed under the Apache License, Version 2.0 (the "License")
    // you may not use this file except in compliance with the License.
    // You may obtain a copy of the License at
    //
    // http://www.apache.org/licenses/LICENSE-2.0
    //
    // Unless required by applicable law or agreed to in writing, software
    // distributed under the License is distributed on an "AS IS" BASIS,
    // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    // See the License for the specific language governing permissions and
    // limitations under the License.
    package utils
    
    import (
        "testing"
    )
    
    func (f Filter) String() string {
        s := make([]byte, 8*len(f))
        for i, x := range f {
            for j := 0; j < 8; j++ {
                if x&(1<<uint(j)) != 0 {
                    s[8*i+j] = '1'
                } else {
                    s[8*i+j] = '.'
                }
            }
        }
        return string(s)
    }
    
    func TestSmallBloomFilter(t *testing.T) {
        var hash []uint32
        for _, word := range [][]byte{
            []byte("hello"),
            []byte("world"),
        } {
            hash = append(hash, Hash(word))
        }
    
        f := NewFilter(hash, 10)
        got := f.String()
        // The magic want string comes from running the C++ leveldb code's bloom_test.cc.
        want := "1...1.........1.........1.....1...1...1.....1.........1.....1....11....."
        if got != want {
            t.Fatalf("bits:\ngot  %q\nwant %q", got, want)
        }
    
        m := map[string]bool{
            "hello": true,
            "world": true,
            "x":     false,
            "foo":   false,
        }
        for k, want := range m {
            got := f.MayContainKey([]byte(k))
            if got != want {
                t.Errorf("MayContain: k=%q: got %v, want %v", k, got, want)
            }
        }
    }
    
    func TestBloomFilter(t *testing.T) {
        nextLength := func(x int) int {
            if x < 10 {
                return x + 1
            }
            if x < 100 {
                return x + 10
            }
            if x < 1000 {
                return x + 100
            }
            return x + 1000
        }
        le32 := func(i int) []byte {
            b := make([]byte, 4)
            b[0] = uint8(uint32(i) >> 0)
            b[1] = uint8(uint32(i) >> 8)
            b[2] = uint8(uint32(i) >> 16)
            b[3] = uint8(uint32(i) >> 24)
            return b
        }
    
        nMediocreFilters, nGoodFilters := 0, 0
    loop:
        for length := 1; length <= 10000; length = nextLength(length) {
            keys := make([][]byte, 0, length)
            for i := 0; i < length; i++ {
                keys = append(keys, le32(i))
            }
            var hashes []uint32
            for _, key := range keys {
                hashes = append(hashes, Hash(key))
            }
            f := NewFilter(hashes, 10)
    
            if len(f) > (length*10/8)+40 {
                t.Errorf("length=%d: len(f)=%d is too large", length, len(f))
                continue
            }
    
            // All added keys must match.
            for _, key := range keys {
                if !f.MayContainKey(key) {
                    t.Errorf("length=%d: did not contain key %q", length, key)
                    continue loop
                }
            }
    
            // Check false positive rate.
            nFalsePositive := 0
            for i := 0; i < 10000; i++ {
                if f.MayContainKey(le32(1e9 + i)) {
                    nFalsePositive++
                }
            }
            if nFalsePositive > 0.02*10000 {
                t.Errorf("length=%d: %d false positives in 10000", length, nFalsePositive)
                continue
            }
            if nFalsePositive > 0.0125*10000 {
                nMediocreFilters++
            } else {
                nGoodFilters++
            }
        }
    
        if nMediocreFilters > nGoodFilters/5 {
            t.Errorf("%d mediocre filters but only %d good filters", nMediocreFilters, nGoodFilters)
        }
    }
    
    func TestHash(t *testing.T) {
        // The magic want numbers come from running the C++ leveldb code in hash.cc.
        testCases := []struct {
            s    string
            want uint32
        }{
            {"", 0xbc9f1d34},
            {"g", 0xd04a8bda},
            {"go", 0x3e0b0745},
            {"gop", 0x0c326610},
            {"goph", 0x8c9d6390},
            {"gophe", 0x9bfd4b0a},
            {"gopher", 0xa78edc7c},
            {"I had a dream it would end this way.", 0xe14a9db9},
        }
        for _, tc := range testCases {
            if got := Hash([]byte(tc.s)); got != tc.want {
                t.Errorf("s=%q: got 0x%08x, want 0x%08x", tc.s, got, tc.want)
            }
        }
    }
    
    
    • 参考

    测试代码和实现代码的框架来自:https://github.com/hardcore-os/corekv

    相关文章

      网友评论

          本文标题:学习 Bloom filter

          本文链接:https://www.haomeiwen.com/subject/ahclrrtx.html