题目
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
结尾无空行
Sample Output 1:
70
结尾无空行
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
思路
平衡二叉树,考法很直接,模板很固定
代码
#include <bits/stdc++.h>
using namespace std;
struct node{
int v, height;
node *lchild, *rchild;
node(int data): v(data), height(1), lchild(NULL), rchild(NULL) {
}
};
int getHeight(node* root) {
if (root == NULL) return 0;
return root->height;
}
void updateHeight(node* root) {
root->height = max(getHeight(root->lchild), getHeight(root->rchild)) + 1;
}
int getBalanceFactor(node* root) {
return getHeight(root->lchild) - getHeight(root->rchild);
}
void L(node* &root) {
node* temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void R(node* &root) {
node* temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void insert(node* &root, int v) {
if (root == NULL) {
root = new node(v);
return;
}
if (v < root->v) {
insert(root->lchild, v);
updateHeight(root);
if (getBalanceFactor(root) == 2) {
if (getBalanceFactor(root->lchild) == 1) {
R(root);
} else if (getBalanceFactor(root->lchild) == -1) {
L(root->lchild);
R(root);
}
}
} else {
insert(root->rchild, v);
updateHeight(root);
if (getBalanceFactor(root) == -2) {
if (getBalanceFactor(root->rchild) == -1) {
L(root);
} else if (getBalanceFactor(root->rchild) == 1) {
R(root->rchild);
L(root);
}
}
}
}
int main() {
int n;
int data[10000];
cin>>n;
node* root = NULL;
for (int i = 0; i < n; i++) {
cin>>data[i];
insert(root, data[i]);
}
cout<<root->v<<endl;
}
网友评论