美文网首页
树和二叉树(顺序存储和链式存储)

树和二叉树(顺序存储和链式存储)

作者: Y丶舜禹 | 来源:发表于2020-04-28 10:48 被阅读0次

1.树的概念

  • 节点:节点包括一个数据元素及若干指向其他子树的分支。
  • 节点的度:节点所拥有子树的个数称为节点的度。
  • 叶节点:度为0的节点成为叶结点,叶结点也称为终端节点。
  • 分支节点:度不为0的节点称为分支节点,分支节点又称非终端节点。一棵树中排除叶结点外的所有节点都是分支节点。
  • 祖先节点:从根节点到该节点所经分支上的所有节点。
  • 子孙节点:以某节点为根节点的子树中所有节点
  • 双亲节点:树中某节点有孩子节点,则这个节点称为它孩子节点的双亲节点,双亲节点也成为前驱节点。
  • 孩子节点:树中一个节点的子树的根节点称为该节点的孩子节点,孩子节点也称为后继节点。
  • 兄弟节点:具有相同双亲节点的节点称为兄弟节点。
  • 树的度:树中所有节点的度的最大值成为该树的度。
  • 节点的层次:从根节点到树中某节点所经路径上的分支也称为该节点的层次,根节点的层次为1,其他节点层次是双亲节点层次加1.
  • 树的深度:树中所有节点的层次的最大值称为该树的深度。

2.二叉树

2.1 定义:

二叉树,是每个节点最多只有两个分之的树结构,通常分之被称作“左子树”或者“右子树”;二叉树的分之具有左右次序,且不能随意颠倒。

2.2 性质:
  • 性质1: 在二叉树的第i层上最多有2i-1个结点
  • 性质2: 深度为K的二叉树最多有2k -1 个结点(K>=1)
  • 性质3: 对于任何一颗二叉树T,如果其终端结点数为n0,度为2的结 点数为n2,则n0 = n2 + 1;
  • 性质4: 具有n个结点的完全二叉树深度为(log2(n))+1
  • 性质5:对具有n个结点的完全二叉树,如果按照从上至下和从左至右的顺序对二 叉树的所有结点从1开始编号,则对于任意的序号为i的结点有:
    A.如果i>1,那么序号为i的结点的双亲结点序号为i/2;
    B.如果i=1,那么序号为i的结点为根节点,无双亲结点;
    C.如果2i<=n,那么序号为i的结点的左孩子结点序号为2i;
    D.如果2i>n,那么序号为i的结点无左孩子;
    E.如果2i+1<=n,那么序号为i的结点右孩子序号为2i+1;
    F.如果2i+1>n,那么序号为i的结点无右孩子。
2.3 五种形态:
2.4 特殊二叉树-斜树
2.5 完全二叉树

若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。


3. 二叉树的顺序存储(数组存储)

满二叉树的顺序存储
一般二叉树的顺序存储,造成了空间浪费
斜树的存储,会造成了严重的空间浪费

我们想存储好二叉树,就必须解决空间浪费的问题。

3.1定义结构体

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 100 /* 存储空间初始分配量 */
#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */

typedef int Status;        /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType;      /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点  */
CElemType Nil = 0;   /*设整型以0为空 或者以 INT_MAX(65535)*/

typedef struct {
    int level; //结点层
    int order; //本层的序号(按照满二叉树给定序号规则)
}Position;

3.2 二叉树的基本操作
//6.1 visit
Status visit(CElemType c){
    printf("%d ",c);
    return OK;
}

//6.2 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
    
    for (int i = 0; i < MAX_TREE_SIZE; i++) {
        //将二叉树初始化值置空
        T[i] = Nil;
    }
    
    return OK;
}

//6.3 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T){
    int i = 0;
    
    //printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
    /*
     1      -->1
     2     3   -->2
     4  5  6   7 -->3
     8  9 10       -->4
     
     1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
     */
    
    while (i < 10) {
        T[i] = i+1;
        printf("%d ",T[i]);
        
        //结点不为空,且无双亲结点
        if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
            printf("出现无双亲的非根结点%d\n",T[i]);
            exit(ERROR);
        }
        
        i++;
        
    }
    
    //将空赋值给T的后面的结点
    while (i < MAX_TREE_SIZE) {
        T[i] = Nil;
        i++;
    }
    
    return OK;
}

//技巧:
//如果大家想要2个函数的结果一样,但是目的不同;
//在顺序存储结构中, 两个函数完全一样的结果
#define ClearBiTree InitBiTree

/*6.4 判断二叉树是否为空
 初始条件: 二叉树已存在
 操作结果: 若T为空二叉树,则返回TRUE,否则返回FALSE;
 */
Status BiTreeEmpty(SqBiTree T){
    //根结点为空,则二叉树为空
    if (T[0] == Nil)
        return TRUE;
    
    return FALSE;
}

/*6.5 获取二叉树的深度
 初始条件: 二叉树已存在
 操作结果: 返回二叉树T深度;
 */
int BiTreeDepth(SqBiTree T){
    
    int j = -1;
    int i;
    
    //找到最后一个结点
    //MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
    for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
        if (T[i] != Nil)
            break;
    }
    
    do {
        j++;
    } while ( powl(2, j) <= i); //计算2的次幂
    
    return j;
}

/*6.6 返回处于位置e(层,本层序号)的结点值
 初始条件: 二叉树T存在,e是T中某个结点(的位置)
 操作结构: 返回处于位置e(层,本层序号)的结点值
 */
CElemType Value(SqBiTree T,Position e){
    
    /*
     Position.level -> 结点层.表示第几层;
     Position.order -> 本层的序号(按照满二叉树给定序号规则)
     */
    
    //pow(2,e.level-1) 找到层序
    printf("%d\n",(int)pow(2,e.level-1));
    
    //e.order
    printf("%d\n",e.order);
    
    //4+2-2;
    return T[(int)pow(2, e.level-1)+e.order-2];
    
}


/*6.7 获取二叉树跟结点的值
 初始条件: 二叉树T存在
 操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
 */
Status Root(SqBiTree T,CElemType *e){
    if (BiTreeEmpty(T)) {
        return ERROR;
    }
    
    *e = T[0];
    return OK;
}

/*
 6.8 给处于位置e的结点赋值
 初始条件: 二叉树存在,e是T中某个结点的位置
 操作结果: 给处于位置e的结点赋值Value;
 */
Status Assign(SqBiTree T,Position e,CElemType value){
    
    //找到当前e在数组中的具体位置索引
    int i = (int)powl(2, e.level-1)+e.order -2;
    
    //叶子结点的双亲为空
    if (value != Nil &&  T[(i+1)/2-1] == Nil) {
        return ERROR;
    }
    
    //给双亲赋空值但是有叶子结点
    if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
        return  ERROR;
    }
    
    T[i] = value;
    return OK;
}

/*
 6.9 获取e的双亲;
 初始条件: 二叉树存在,e是T中的某一个结点
 操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
 */
CElemType Parent(SqBiTree T, CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    
    for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
        //找到e
        if (T[i] == e) {
            return T[(i+1)/2 - 1];
        }
    }
    
    //没有找到
    return Nil;
    
}

/*
 6.10 获取某个结点的左孩子;
 初始条件:二叉树T存在,e是某个结点
 操作结果:返回e的左孩子,若e无左孩子,则返回"空"
 */
CElemType LeftChild(SqBiTree T,CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
        //找到e
        if (T[i] == e) {
            return T[i*2+1];
        }
    }
    
    //没有找到
    return Nil;
    
}

/*
 6.11 获取某个结点的右孩子;
 初始条件:二叉树T存在,e是某个结点
 操作结果:返回e的左孩子,若e无左孩子,则返回"空"
 */
CElemType RightChild(SqBiTree T,CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
        //找到e
        if (T[i] == e) {
            return T[i*2+2];
        }
    }
    
    //没有找到
    return Nil;
    
}

/*
 6.12 获取结点的左兄弟
 初始条件:  二叉树T存在,e是T中某个结点
 操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
 */
CElemType LeftSibling(SqBiTree T,CElemType e)
{
    /* 空树 */
    if(T[0]==Nil)
        return Nil;
    
    for(int i=1;i<=MAX_TREE_SIZE-1;i++)
    /* 找到e且其序号为偶数(是右孩子) */
        if(T[i]==e&&i%2==0)
            return T[i-1];
    
    return Nil; /* 没找到e */
}

/* 6.13 获取结点的右兄弟
 初始条件: 二叉树T存在,e是T中某个结点
 操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
 */
CElemType RightSibling(SqBiTree T,CElemType e)
{
    /* 空树 */
    if(T[0]==Nil)
        return Nil;
    
    for(int i=1;i<=MAX_TREE_SIZE-1;i++)
    /* 找到e且其序号为奇数(是左孩子) */
        if(T[i]==e&&i%2==1)
            return T[i+1];
    
    return Nil; /* 没找到e */
}
3.3 二叉树的遍历
/*
 6.14 层序遍历二叉树
 */
void LevelOrderTraverse(SqBiTree T){
    
    int i = MAX_TREE_SIZE-1;
    
    //找到最后一个非空结点的序号
    while (T[i] == Nil) i--;
    
    //从根结点起,按层序遍历二叉树
    for (int j = 0; j <= i; j++)
        //只遍历非空结点
        if (T[j] != Nil)
            visit(T[j]);
    
    printf("\n");
}

/*
 6.15 前序遍历二叉树
 */
void PreTraverse(SqBiTree T,int e){
    
    //打印结点数据
    visit(T[e]);
    
    //先序遍历左子树
    if (T[2 * e + 1] != Nil) {
        PreTraverse(T, 2*e+1);
    }
    //最后先序遍历右子树
    if (T[2 * e + 2] != Nil) {
        PreTraverse(T, 2*e+2);
    }
}

Status PreOrderTraverse(SqBiTree T){
    
    //树不为空
    if (!BiTreeEmpty(T)) {
        PreTraverse(T, 0);
    }
    printf("\n");
    return  OK;
}

/*
 6.16 中序遍历
 */
void InTraverse(SqBiTree T, int e){
    
    /* 左子树不空 */
    if (T[2*e+1] != Nil)
        InTraverse(T, 2*e+1);
    
    visit(T[e]);
    
    /* 右子树不空 */
    if (T[2*e+2] != Nil)
        InTraverse(T, 2*e+2);
}

Status InOrderTraverse(SqBiTree T){
    
    /* 树不空 */
    if (!BiTreeEmpty(T)) {
        InTraverse(T, 0);
    }
    printf("\n");
    return OK;
}

/*
 6.17 后序遍历
 */
void PostTraverse(SqBiTree T,int e)
{   /* 左子树不空 */
    if(T[2*e+1]!=Nil)
        PostTraverse(T,2*e+1);
    /* 右子树不空 */
    if(T[2*e+2]!=Nil)
        PostTraverse(T,2*e+2);
    
    visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
    if(!BiTreeEmpty(T)) /* 树不空 */
        PostTraverse(T,0);
    printf("\n");
    return OK;
}

4. 二叉树的链式存储(链表存储)

4.1定义结构体
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

/* 存储空间初始分配量 */
#define MAXSIZE 100
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;

#pragma mark--二叉树构造
int indexs = 1;
typedef char String[24]; /*  0号单元存放串的长度 */
String str;
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode  /* 结点结构 */
{
    CElemType data;        /* 结点数据 */
    struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;

4.2 二叉树的基本操作
Status StrAssign(String T,char *chars)
{
    int i;
    if(strlen(chars)>MAXSIZE)
        return ERROR;
    else
    {
        T[0]=strlen(chars);
        for(i=1;i<=T[0];i++)
            T[i]=*(chars+i-1);
        return OK;
    }
}

/*7.1 打印数据*/
Status visit(CElemType e)
{
    printf("%c ",e);
    return OK;
}

/* 7.2 构造空二叉树T */
Status InitBiTree(BiTree *T)
{
    *T=NULL;
    return OK;
}

/* 7.3 销毁二叉树
 初始条件: 二叉树T存在。
 操作结果: 销毁二叉树T
 */
void DestroyBiTree(BiTree *T)
{
    if(*T)
    {
        /* 有左孩子 */
        if((*T)->lchild)
            DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
        
        /* 有右孩子 */
        if((*T)->rchild)
            DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
        
        free(*T); /* 释放根结点 */
        
        *T=NULL; /* 空指针赋0 */
    }
}
#define ClearBiTree DestroyBiTree

/*7.4 创建二叉树
 按前序输入二叉树中的结点值(字符),#表示空树;
 */
void CreateBiTree(BiTree *T){
    
    CElemType ch;
    
    //获取字符
    ch = str[indexs++];
    
    //判断当前字符是否为'#'
    if (ch == '#') {
        *T = NULL;
    }else
    {
        //创建新的结点
        *T = (BiTree)malloc(sizeof(BiTNode));
        //是否创建成功
        if (!*T) {
            exit(OVERFLOW);
        }
        
        /* 生成根结点 */
        (*T)->data = ch;
        /* 构造左子树 */
        CreateBiTree(&(*T)->lchild);
        /* 构造右子树 */
        CreateBiTree(&(*T)->rchild);
    }
    
}


/*
 7.5 二叉树T是否为空;
 初始条件: 二叉树T存在
 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
 */
Status BiTreeEmpty(BiTree T)
{
    if(T)
        return FALSE;
    else
        return TRUE;
}

/*
 7.6 二叉树T的深度
 初始条件: 二叉树T存在
 操作结果: 返回T的深度
 */
int BiTreeDepth(BiTree T){
    
    int i,j;
    if(!T)
        return 0;
    
    //计算左孩子的深度
    if(T->lchild)
        i=BiTreeDepth(T->lchild);
    else
        i=0;
    
    //计算右孩子的深度
    if(T->rchild)
        j=BiTreeDepth(T->rchild);
    else
        j=0;
    
    //比较i和j
    return i>j?i+1:j+1;
}

/*
 7.7 二叉树T的根
 初始条件: 二叉树T存在
 操作结果: 返回T的根
 */
CElemType Root(BiTree T){
    if (BiTreeEmpty(T))
        return Nil;
    
    return T->data;
}

/*
 7.8 返回p所指向的结点值;
 初始条件: 二叉树T存在,p指向T中某个结点
 操作结果: 返回p所指结点的值
 */
CElemType Value(BiTree p){
    return p->data;
}

/*
 7.8 给p所指结点赋值为value;
 初始条件: 二叉树T存在,p指向T中某个结点
 操作结果: 给p所指结点赋值为value
 */
void Assign(BiTree p,CElemType value)
{
    p->data=value;
}
4.3 二叉树的遍历
/*
 7.8  前序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 前序递归遍历T
 */

void PreOrderTraverse(BiTree T)
{
    if(T==NULL)
        return;
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
    PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}


/*
 7.9  中序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 中序递归遍历T
 */
void InOrderTraverse(BiTree T)
{
    if(T==NULL)
        return ;
    InOrderTraverse(T->lchild); /* 中序遍历左子树 */
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}

/*
 7.10  后序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 中序递归遍历T
 */
void PostOrderTraverse(BiTree T)
{
    if(T==NULL)
        return;
    PostOrderTraverse(T->lchild); /* 先后序遍历左子树  */
    PostOrderTraverse(T->rchild); /* 再后序遍历右子树  */
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}

相关文章

  • 树有两种存储形式:顺序存储和链式存储。 二叉树:参考链接:https://blog.csdn.net/bingfe...

  • Java二叉树的遍历思想及核心代码实现

    二叉树在计算机中的存储方式往往线性结构,线性存储分为顺序存储和链式存储,将二叉树按层序编号。 顺序结构:按编号的顺...

  • 数据结构--树

    树的存储结构一(分为顺序存储和链式存储[二叉链表])树的存储结构二 二叉树 二叉树:是n(n≥0)个结点的有限集合...

  • 数据结构重学日记(十七)二叉树的存储结构

    二叉树的存储结构也包括顺序存储和链式存储 顺序存储 就是用一组地址连续的存储单元依次自上而下,自左至右存储完全二叉...

  • 数据结构与算法的目录整理

    Ⅰ. 线性表 Ⅰ.1. 顺序存储结构之数组 Ⅰ.2. 链式存储之链表 Ⅱ. 树 Ⅱ.1. 树和二叉树的应用之赫夫曼...

  • 10-二叉树

    二叉树 对于树这块,基础部分都好理解,我仅仅整理树的难点知识 我们先想一下,二叉树如何存储?顺序存储还是链式存储?...

  • 树和二叉树(顺序存储和链式存储)

    1.树的概念 节点:节点包括一个数据元素及若干指向其他子树的分支。 节点的度:节点所拥有子树的个数称为节点的度。 ...

  • 线索二叉树

    之前我们说过二叉树的顺序存储和链式存储,那么今天我们来说一下线索化二叉树是如何实现的。 线索化二叉树其实就是在二叉...

  • 四、树与二叉树

    四、树与二叉树 1. 二叉树的顺序存储结构 二叉树的顺序存储就是用数组存储二叉树。二叉树的每个结点在顺序存储中都有...

  • 面试基础复习

    1.数据结构的存储 数据结构的存储一般常用的有两种: 顺序存储结构 和 链式存储结构。顺序存储结构和链式存储结构的...

网友评论

      本文标题:树和二叉树(顺序存储和链式存储)

      本文链接:https://www.haomeiwen.com/subject/aildwhtx.html