1.树的概念
- 节点:节点包括一个数据元素及若干指向其他子树的分支。
- 节点的度:节点所拥有子树的个数称为节点的度。
- 叶节点:度为0的节点成为叶结点,叶结点也称为终端节点。
- 分支节点:度不为0的节点称为分支节点,分支节点又称非终端节点。一棵树中排除叶结点外的所有节点都是分支节点。
- 祖先节点:从根节点到该节点所经分支上的所有节点。
- 子孙节点:以某节点为根节点的子树中所有节点
- 双亲节点:树中某节点有孩子节点,则这个节点称为它孩子节点的双亲节点,双亲节点也成为前驱节点。
- 孩子节点:树中一个节点的子树的根节点称为该节点的孩子节点,孩子节点也称为后继节点。
- 兄弟节点:具有相同双亲节点的节点称为兄弟节点。
- 树的度:树中所有节点的度的最大值成为该树的度。
- 节点的层次:从根节点到树中某节点所经路径上的分支也称为该节点的层次,根节点的层次为1,其他节点层次是双亲节点层次加1.
- 树的深度:树中所有节点的层次的最大值称为该树的深度。
2.二叉树
![](https://img.haomeiwen.com/i1980359/ea3ab5c89f7e018a.png)
2.1 定义:
二叉树,是每个节点最多只有两个分之的树结构,通常分之被称作“左子树”或者“右子树”;二叉树的分之具有左右次序,且不能随意颠倒。
2.2 性质:
- 性质1: 在二叉树的第i层上最多有2i-1个结点
- 性质2: 深度为K的二叉树最多有2k -1 个结点(K>=1)
- 性质3: 对于任何一颗二叉树T,如果其终端结点数为n0,度为2的结 点数为n2,则n0 = n2 + 1;
- 性质4: 具有n个结点的完全二叉树深度为(log2(n))+1
- 性质5:对具有n个结点的完全二叉树,如果按照从上至下和从左至右的顺序对二 叉树的所有结点从1开始编号,则对于任意的序号为i的结点有:
A.如果i>1,那么序号为i的结点的双亲结点序号为i/2;
B.如果i=1,那么序号为i的结点为根节点,无双亲结点;
C.如果2i<=n,那么序号为i的结点的左孩子结点序号为2i;
D.如果2i>n,那么序号为i的结点无左孩子;
E.如果2i+1<=n,那么序号为i的结点右孩子序号为2i+1;
F.如果2i+1>n,那么序号为i的结点无右孩子。
2.3 五种形态:
![](https://img.haomeiwen.com/i1980359/0334315c5875c781.png)
2.4 特殊二叉树-斜树
![](https://img.haomeiwen.com/i1980359/58e705a1f6c4c1ff.png)
2.5 完全二叉树
若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
![](https://img.haomeiwen.com/i1980359/d48d074693d2381c.png)
3. 二叉树的顺序存储(数组存储)
满二叉树的顺序存储
![](https://img.haomeiwen.com/i1980359/79ad92aa2f45333b.png)
一般二叉树的顺序存储,造成了空间浪费
![](https://img.haomeiwen.com/i1980359/64c88ce9ae16e0ff.png)
斜树的存储,会造成了严重的空间浪费
![](https://img.haomeiwen.com/i1980359/f12f67aa530904cb.png)
我们想存储好二叉树,就必须解决空间浪费的问题。
3.1定义结构体
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */
#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType; /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */
CElemType Nil = 0; /*设整型以0为空 或者以 INT_MAX(65535)*/
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
3.2 二叉树的基本操作
//6.1 visit
Status visit(CElemType c){
printf("%d ",c);
return OK;
}
//6.2 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
//6.3 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T){
int i = 0;
//printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
/*
1 -->1
2 3 -->2
4 5 6 7 -->3
8 9 10 -->4
1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
*/
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
printf("出现无双亲的非根结点%d\n",T[i]);
exit(ERROR);
}
i++;
}
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
//技巧:
//如果大家想要2个函数的结果一样,但是目的不同;
//在顺序存储结构中, 两个函数完全一样的结果
#define ClearBiTree InitBiTree
/*6.4 判断二叉树是否为空
初始条件: 二叉树已存在
操作结果: 若T为空二叉树,则返回TRUE,否则返回FALSE;
*/
Status BiTreeEmpty(SqBiTree T){
//根结点为空,则二叉树为空
if (T[0] == Nil)
return TRUE;
return FALSE;
}
/*6.5 获取二叉树的深度
初始条件: 二叉树已存在
操作结果: 返回二叉树T深度;
*/
int BiTreeDepth(SqBiTree T){
int j = -1;
int i;
//找到最后一个结点
//MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
if (T[i] != Nil)
break;
}
do {
j++;
} while ( powl(2, j) <= i); //计算2的次幂
return j;
}
/*6.6 返回处于位置e(层,本层序号)的结点值
初始条件: 二叉树T存在,e是T中某个结点(的位置)
操作结构: 返回处于位置e(层,本层序号)的结点值
*/
CElemType Value(SqBiTree T,Position e){
/*
Position.level -> 结点层.表示第几层;
Position.order -> 本层的序号(按照满二叉树给定序号规则)
*/
//pow(2,e.level-1) 找到层序
printf("%d\n",(int)pow(2,e.level-1));
//e.order
printf("%d\n",e.order);
//4+2-2;
return T[(int)pow(2, e.level-1)+e.order-2];
}
/*6.7 获取二叉树跟结点的值
初始条件: 二叉树T存在
操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
*/
Status Root(SqBiTree T,CElemType *e){
if (BiTreeEmpty(T)) {
return ERROR;
}
*e = T[0];
return OK;
}
/*
6.8 给处于位置e的结点赋值
初始条件: 二叉树存在,e是T中某个结点的位置
操作结果: 给处于位置e的结点赋值Value;
*/
Status Assign(SqBiTree T,Position e,CElemType value){
//找到当前e在数组中的具体位置索引
int i = (int)powl(2, e.level-1)+e.order -2;
//叶子结点的双亲为空
if (value != Nil && T[(i+1)/2-1] == Nil) {
return ERROR;
}
//给双亲赋空值但是有叶子结点
if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
return ERROR;
}
T[i] = value;
return OK;
}
/*
6.9 获取e的双亲;
初始条件: 二叉树存在,e是T中的某一个结点
操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
*/
CElemType Parent(SqBiTree T, CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
//找到e
if (T[i] == e) {
return T[(i+1)/2 - 1];
}
}
//没有找到
return Nil;
}
/*
6.10 获取某个结点的左孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType LeftChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+1];
}
}
//没有找到
return Nil;
}
/*
6.11 获取某个结点的右孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType RightChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+2];
}
}
//没有找到
return Nil;
}
/*
6.12 获取结点的左兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
*/
CElemType LeftSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为偶数(是右孩子) */
if(T[i]==e&&i%2==0)
return T[i-1];
return Nil; /* 没找到e */
}
/* 6.13 获取结点的右兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
*/
CElemType RightSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为奇数(是左孩子) */
if(T[i]==e&&i%2==1)
return T[i+1];
return Nil; /* 没找到e */
}
3.3 二叉树的遍历
/*
6.14 层序遍历二叉树
*/
void LevelOrderTraverse(SqBiTree T){
int i = MAX_TREE_SIZE-1;
//找到最后一个非空结点的序号
while (T[i] == Nil) i--;
//从根结点起,按层序遍历二叉树
for (int j = 0; j <= i; j++)
//只遍历非空结点
if (T[j] != Nil)
visit(T[j]);
printf("\n");
}
/*
6.15 前序遍历二叉树
*/
void PreTraverse(SqBiTree T,int e){
//打印结点数据
visit(T[e]);
//先序遍历左子树
if (T[2 * e + 1] != Nil) {
PreTraverse(T, 2*e+1);
}
//最后先序遍历右子树
if (T[2 * e + 2] != Nil) {
PreTraverse(T, 2*e+2);
}
}
Status PreOrderTraverse(SqBiTree T){
//树不为空
if (!BiTreeEmpty(T)) {
PreTraverse(T, 0);
}
printf("\n");
return OK;
}
/*
6.16 中序遍历
*/
void InTraverse(SqBiTree T, int e){
/* 左子树不空 */
if (T[2*e+1] != Nil)
InTraverse(T, 2*e+1);
visit(T[e]);
/* 右子树不空 */
if (T[2*e+2] != Nil)
InTraverse(T, 2*e+2);
}
Status InOrderTraverse(SqBiTree T){
/* 树不空 */
if (!BiTreeEmpty(T)) {
InTraverse(T, 0);
}
printf("\n");
return OK;
}
/*
6.17 后序遍历
*/
void PostTraverse(SqBiTree T,int e)
{ /* 左子树不空 */
if(T[2*e+1]!=Nil)
PostTraverse(T,2*e+1);
/* 右子树不空 */
if(T[2*e+2]!=Nil)
PostTraverse(T,2*e+2);
visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
if(!BiTreeEmpty(T)) /* 树不空 */
PostTraverse(T,0);
printf("\n");
return OK;
}
4. 二叉树的链式存储(链表存储)
4.1定义结构体
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
/* 存储空间初始分配量 */
#define MAXSIZE 100
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;
#pragma mark--二叉树构造
int indexs = 1;
typedef char String[24]; /* 0号单元存放串的长度 */
String str;
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode /* 结点结构 */
{
CElemType data; /* 结点数据 */
struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
4.2 二叉树的基本操作
Status StrAssign(String T,char *chars)
{
int i;
if(strlen(chars)>MAXSIZE)
return ERROR;
else
{
T[0]=strlen(chars);
for(i=1;i<=T[0];i++)
T[i]=*(chars+i-1);
return OK;
}
}
/*7.1 打印数据*/
Status visit(CElemType e)
{
printf("%c ",e);
return OK;
}
/* 7.2 构造空二叉树T */
Status InitBiTree(BiTree *T)
{
*T=NULL;
return OK;
}
/* 7.3 销毁二叉树
初始条件: 二叉树T存在。
操作结果: 销毁二叉树T
*/
void DestroyBiTree(BiTree *T)
{
if(*T)
{
/* 有左孩子 */
if((*T)->lchild)
DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
/* 有右孩子 */
if((*T)->rchild)
DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
free(*T); /* 释放根结点 */
*T=NULL; /* 空指针赋0 */
}
}
#define ClearBiTree DestroyBiTree
/*7.4 创建二叉树
按前序输入二叉树中的结点值(字符),#表示空树;
*/
void CreateBiTree(BiTree *T){
CElemType ch;
//获取字符
ch = str[indexs++];
//判断当前字符是否为'#'
if (ch == '#') {
*T = NULL;
}else
{
//创建新的结点
*T = (BiTree)malloc(sizeof(BiTNode));
//是否创建成功
if (!*T) {
exit(OVERFLOW);
}
/* 生成根结点 */
(*T)->data = ch;
/* 构造左子树 */
CreateBiTree(&(*T)->lchild);
/* 构造右子树 */
CreateBiTree(&(*T)->rchild);
}
}
/*
7.5 二叉树T是否为空;
初始条件: 二叉树T存在
操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
*/
Status BiTreeEmpty(BiTree T)
{
if(T)
return FALSE;
else
return TRUE;
}
/*
7.6 二叉树T的深度
初始条件: 二叉树T存在
操作结果: 返回T的深度
*/
int BiTreeDepth(BiTree T){
int i,j;
if(!T)
return 0;
//计算左孩子的深度
if(T->lchild)
i=BiTreeDepth(T->lchild);
else
i=0;
//计算右孩子的深度
if(T->rchild)
j=BiTreeDepth(T->rchild);
else
j=0;
//比较i和j
return i>j?i+1:j+1;
}
/*
7.7 二叉树T的根
初始条件: 二叉树T存在
操作结果: 返回T的根
*/
CElemType Root(BiTree T){
if (BiTreeEmpty(T))
return Nil;
return T->data;
}
/*
7.8 返回p所指向的结点值;
初始条件: 二叉树T存在,p指向T中某个结点
操作结果: 返回p所指结点的值
*/
CElemType Value(BiTree p){
return p->data;
}
/*
7.8 给p所指结点赋值为value;
初始条件: 二叉树T存在,p指向T中某个结点
操作结果: 给p所指结点赋值为value
*/
void Assign(BiTree p,CElemType value)
{
p->data=value;
}
4.3 二叉树的遍历
/*
7.8 前序递归遍历T
初始条件:二叉树T存在;
操作结果: 前序递归遍历T
*/
void PreOrderTraverse(BiTree T)
{
if(T==NULL)
return;
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
/*
7.9 中序递归遍历T
初始条件:二叉树T存在;
操作结果: 中序递归遍历T
*/
void InOrderTraverse(BiTree T)
{
if(T==NULL)
return ;
InOrderTraverse(T->lchild); /* 中序遍历左子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
/*
7.10 后序递归遍历T
初始条件:二叉树T存在;
操作结果: 中序递归遍历T
*/
void PostOrderTraverse(BiTree T)
{
if(T==NULL)
return;
PostOrderTraverse(T->lchild); /* 先后序遍历左子树 */
PostOrderTraverse(T->rchild); /* 再后序遍历右子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}
网友评论