titile | Detection in Crowded Scenes: One Proposal, Multiple Predictions |
---|---|
url | https://arxiv.org/pdf/2003.09163.pdf |
动机 | 提高密集场景人体检测的效果,simple and almost cost-free。 |
内容 |
贡献点: 1、每个proposal预测a set of instance。 2、EMD loss学习instance set prediction。 3、后处理Set NMS。 4、 refinement module (RM),解决潜在的FP(可选)。 现有方法解决crowd问题: 1、NMS:soft NMS、softer NMS、different NMS thresholds for different bounding boxes、adaptive-NMS。 2、Loss functions for crowded detection: Aggregation Loss(proposals更贴近gt) 、Repulsion Loss(proposal与多个gt overlap,引入惩罚项),这些loss对crowded场景有帮助但NMS仍然限制crowd场景。 3、Re-scoring: RelationNet(不用NMS在coco也有好的效果,但是crowdhuman效果不好,different predictions from very close proposals, so their features and relations are also very similar)、part-based detectors 本文方法:Multiple Instance Prediction 一个proposal匹配多个gt 1、Instance set prediction:c:class label with confidence、l:relative coordinates 2、EMD loss(实验中K=2): 3、Set NMS:we check whether the two box come from the same proposal; if yes, we skip the suppression 4、Refinement module:一个proposal匹配多个gt,有更多的predictions,有产生更多FP风险, 5、Discussion: relation to previous methods: (1)Double-person detector models person pairs in the DPM。 (2)MultiBox 在image patch预测所有instances; YOLO v1/v2预测all instances centered at a certain location, 它们不是proposal-based。 (3) https://arxiv.org/pdf/1506.04878.pdf用LSTM去decode图像中每个grid的instance boxes,和EMD loss相似,用Hungarian Loss for multiple instance supervision,后处理merge the predictions produced by adjacent grids,该方法没有用到proposals,很难检测various sizes/shapes objects(pedestrians or general objects),LSTM复杂, 整合到framework比较难。 |
实验 |
Evaluation metrics: 1、 Averaged Precision (AP)。 2、MR−2:log-average Miss Rate on False Positive Per Image (FPPI) in [10−2,100],对FP敏感,尤其高分的FP。 3、Jaccard Index (JI):counting ability of a detector。 Detailed Settings: resnet50+FPN+ROIAlign,NMS=0.5。 Experiment on CrowdHuman: Main results and ablation study: 1、没有MR时,AP和JI均增长较多,说明更多的正样本检测到,MR也增长说明没有引入更多的FP 2、加入RM,AP和JI略增长,MR增长多,说明有减少FP作用。 Comparisons with various NMS strategies: 1、NMS 阈值增大(0.5->0.6)recall多,AP增大,但MR指标变差,召回FP多。 2、Soft-NMS:增加AP,JI和MR不变。 Comparisons with previous works: GossipNet and RelationNet – which are representative works categorized into advanced NMS and re-scoring approaches respectively Analysis on recalls: Experiments on CityPersons Qualitative results: Experiments on COCO coco crowdedness比较少,coco数据集效果可以说明以下两点: 1) whether our method generalizes well to multi-class detection problems; 2) whether the proposed approach is robust to different crowdedness, especially to isolated instances. |
思考 |
网友评论