美文网首页
ceres求解PnP--SLAM 十四讲第七章课后题

ceres求解PnP--SLAM 十四讲第七章课后题

作者: 远行_2a22 | 来源:发表于2018-08-10 14:32 被阅读0次

    by jie 2018.8.10


    尝试用ceres去求解BA。完成SLAM十四讲第七章课后题10。遇到不少问题,记录如下:

    首先上代码:

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <ceres/ceres.h>
    #include <chrono>
    
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <Eigen/Core>
    #include <Eigen/Geometry>
    #include <Eigen/SVD>
    
    #include "common/rotation.h"
    using namespace std;
    using namespace cv;
    
    void find_feature_matches (
        const Mat& img_1, const Mat& img_2,
        std::vector<KeyPoint>& keypoints_1,
        std::vector<KeyPoint>& keypoints_2,
        std::vector< DMatch >& matches );
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam ( const Point2d& p, const Mat& K );
    
    
    struct cost_function_define
    {
      cost_function_define(Point3f p1,Point2f p2):_p1(p1),_p2(p2){}
      template<typename T>
      bool operator()(const T* const cere_r,const T* const cere_t,T* residual)const
      {
        T p_1[3];
        T p_2[3];
        p_1[0]=T(_p1.x);
        p_1[1]=T(_p1.y);
        p_1[2]=T(_p1.z);
    cout<<"point_3d: "<<p_1[0]<<" "<<p_1[1]<<"  "<<p_1[2]<<endl;
        AngleAxisRotatePoint(cere_r,p_1,p_2);
    
        p_2[0]=p_2[0]+cere_t[0];
        p_2[1]=p_2[1]+cere_t[1];
        p_2[2]=p_2[2]+cere_t[2];
    
        const T x=p_2[0]/p_2[2];
        const T y=p_2[1]/p_2[2];
        //三维点重投影计算的像素坐标
        const T u=x*520.9+325.1;
        const T v=y*521.0+249.7;
        
       
        //观测的在图像坐标下的值
        T u1=T(_p2.x);
        T v1=T(_p2.y);
     
        residual[0]=u-u1;
        residual[1]=v-v1;
        return true;
      }
       Point3f _p1;
       Point2f _p2;
    };
    
    
    int main ( int argc, char** argv )
    {
        if ( argc != 5 )
        {
            cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"<<endl;
            return 1;
        }
        //-- 读取图像
        Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
        Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
    
        vector<KeyPoint> keypoints_1, keypoints_2;
        vector<DMatch> matches;
        find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
        cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
    
        // 建立3D点
        Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
        Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
        vector<Point3f> pts_3d;
        vector<Point2f> pts_2d;
        for ( DMatch m:matches )
        {
            ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
            if ( d == 0 )   // bad depth
                continue;
            float dd = d/1000.0;
            Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
            pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) );
            pts_2d.push_back ( keypoints_2[m.trainIdx].pt );
        }
    
        cout<<"3d-2d pairs: "<<pts_3d.size() <<endl;
    
        Mat r, t;
        solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
        Mat R;
        cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
        cout<<"----------------optional berore--------------------"<<endl;
        cout<<"R="<<endl<<R<<endl;
        cout<<"t="<<endl<<t<<endl;
    
        cout<<"R_inv = "<<R.t() <<endl;
        cout<<"t_inv = "<<-R.t() *t<<endl;
    
       
        cout<<"calling bundle adjustment"<<endl;
    
     //给rot,和tranf初值
         double cere_rot[3],cere_tranf[3];
        //  cere_rot[0]=r.at<double>(0,0);
        //  cere_rot[1]=r.at<double>(1,0);
        //  cere_rot[2]=r.at<double>(2,0);
          cere_rot[0]=0;
          cere_rot[1]=1;
          cere_rot[2]=2;
    
         cere_tranf[0]=t.at<double>(0,0);
         cere_tranf[1]=t.at<double>(1,0);
         cere_tranf[2]=t.at<double>(2,0);
    
    
     ceres::Problem problem;
      for(int i=0;i<pts_3d.size();i++)
      {
        ceres::CostFunction* costfunction=new ceres::AutoDiffCostFunction<cost_function_define,2,3,3>(new cost_function_define(pts_3d[i],pts_2d[i]));
        problem.AddResidualBlock(costfunction,NULL,cere_rot,cere_tranf);//注意,cere_rot不能为Mat类型      
      }
     
    
      ceres::Solver::Options option;
      option.linear_solver_type=ceres::DENSE_SCHUR;
      //输出迭代信息到屏幕
      option.minimizer_progress_to_stdout=true;
      //显示优化信息
      ceres::Solver::Summary summary;
      //开始求解
      ceres::Solve(option,&problem,&summary);
      //显示优化信息
      cout<<summary.BriefReport()<<endl;
    
     cout<<"----------------optional after--------------------"<<endl;
    
    Mat cam_3d = ( Mat_<double> ( 3,1 )<<cere_rot[0],cere_rot[1],cere_rot[2]);
    Mat cam_9d;
    cv::Rodrigues ( cam_3d, cam_9d ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
    
    cout<<"cam_9d:"<<endl<<cam_9d<<endl;
    
    cout<<"cam_t:"<<cere_tranf[0]<<"  "<<cere_tranf[1]<<"  "<<cere_tranf[2]<<endl;
    
    
    
    }
    
    void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                                std::vector<KeyPoint>& keypoints_1,
                                std::vector<KeyPoint>& keypoints_2,
                                std::vector< DMatch >& matches )
    {
        //-- 初始化
        Mat descriptors_1, descriptors_2;
        // used in OpenCV3
        Ptr<FeatureDetector> detector = ORB::create();
        Ptr<DescriptorExtractor> descriptor = ORB::create();
        // use this if you are in OpenCV2
        // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
        // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
        Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );
        //-- 第一步:检测 Oriented FAST 角点位置
        detector->detect ( img_1,keypoints_1 );
        detector->detect ( img_2,keypoints_2 );
    
        //-- 第二步:根据角点位置计算 BRIEF 描述子
        descriptor->compute ( img_1, keypoints_1, descriptors_1 );
        descriptor->compute ( img_2, keypoints_2, descriptors_2 );
    
        //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
        vector<DMatch> match;
        // BFMatcher matcher ( NORM_HAMMING );
        matcher->match ( descriptors_1, descriptors_2, match );
    
        //-- 第四步:匹配点对筛选
        double min_dist=10000, max_dist=0;
    
        //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            double dist = match[i].distance;
            if ( dist < min_dist ) min_dist = dist;
            if ( dist > max_dist ) max_dist = dist;
        }
    
        printf ( "-- Max dist : %f \n", max_dist );
        printf ( "-- Min dist : %f \n", min_dist );
    
        //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
            {
                matches.push_back ( match[i] );
            }
        }
    }
    
    Point2d pixel2cam ( const Point2d& p, const Mat& K )
    {
        return Point2d
               (
                   ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
                   ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
               );
    }
    

    代码分析

    首先前面代码是EPnP求解PnP。
    ceres求解BA的话:
    (1)构建cost fuction,即代价函数,也就是寻优的目标式。这个部分需要使用仿函数(functor)这一技巧来实现,做法是定义一个cost function的结构体,在结构体内重载()运算符。

    struct cost_function_define
    {
      cost_function_define(Point3f p1,Point2f p2):_p1(p1),_p2(p2){}
      template<typename T>
      bool operator()(const T* const cere_r,const T* const cere_t,T* residual)const
      {
        T p_1[3];
        T p_2[3];
        p_1[0]=T(_p1.x);
        p_1[1]=T(_p1.y);
        p_1[2]=T(_p1.z);
    cout<<"point_3d: "<<p_1[0]<<" "<<p_1[1]<<"  "<<p_1[2]<<endl;
        AngleAxisRotatePoint(cere_r,p_1,p_2);
    
        p_2[0]=p_2[0]+cere_t[0];
        p_2[1]=p_2[1]+cere_t[1];
        p_2[2]=p_2[2]+cere_t[2];
    
        const T x=p_2[0]/p_2[2];
        const T y=p_2[1]/p_2[2];
        //三维点重投影计算的像素坐标
        const T u=x*520.9+325.1;
        const T v=y*521.0+249.7;
        
       
        //观测的在图像坐标下的值
        T u1=T(_p2.x);
        T v1=T(_p2.y);
     
        residual[0]=u-u1;
        residual[1]=v-v1;
        return true;
      }
       Point3f _p1;
       Point2f _p2;
    };
    

    这里目标函数是重投影误差,将第一帧观测到的3D点坐标先通过R,T变化到第二帧的坐标系下,然后用内参转到图像坐标系下,即重投影的坐标u,v。然后残差是第二帧观测到的该三维点的坐标u1,v1分别减去u,v。

    注意:

    • 这里的R不是旋转矩阵,也不是四元数表示的,而是用欧拉角表示的。
      通过函数 AngleAxisRotatePoint(cere_r,p_1,p_2)可以对3D点进行旋转。相当于用旋转矩阵去左乘。

    • 这里相机内参没有进行优化,而是直接写入,要一起优化可以稍加修改即可。这里优化的只有相机外参。

    • 这里因为有模板,因此要将Point3f类型的_p1转为模板类型p_1,这样才可以在模板类型中的元素进行运算。否则会报错。

    • 还有遇到了奇葩的问题,如果将观测变量_p1由类型 Point3f改为double*,则优化结果完全错误。调试发现,传入的观测_p1始终是第一次的值,后面没有再改变。猜测可能是数组必须按地址传递造成的。我将其类型改为自己写的struct类型则正确,初步验证了我的猜想,但是ceres内部怎么写的造成这样,还不太清楚。

    (2)通过代价函数构建待求解的优化问题

    ceres::Problem problem;
      for(int i=0;i<pts_3d.size();i++)
      {
        ceres::CostFunction* costfunction=new ceres::AutoDiffCostFunction<cost_function_define,2,3,3>(new cost_function_define(pts_3d[i],pts_2d[i]));
        problem.AddResidualBlock(costfunction,NULL,cere_rot,cere_tranf);//注意,cere_rot不能为Mat类型      
      }
    
    • 这里可以看到,待优化的变量为cere_rotcere_tranf,都是3维的变量,残差是2维的,因此ceres::AutoDiffCostFunction<cost_function_define,2,3,3>对应2,3,3.

    • 传入的观测是第一帧坐标系下的3D点坐标,和第二帧图像坐标系下的二维点。因为类型不统一,而又必须要用模板参数,因此这里统一类型,修改为double*

    (3)配置问题并求解

      ceres::Solver::Options option;
      option.linear_solver_type=ceres::DENSE_SCHUR;
      //输出迭代信息到屏幕
      option.minimizer_progress_to_stdout=true;
      //显示优化信息
      ceres::Solver::Summary summary;
      //开始求解
      ceres::Solve(option,&problem,&summary);
      //显示优化信息
      cout<<summary.BriefReport()<<endl;
    
    • 注意cere_rot是旋转向量,因此可以Rodrigues公式转换为旋转矩阵
    Mat cam_3d = ( Mat_<double> ( 3,1 )<<cere_rot[0],cere_rot[1],cere_rot[2]);
    Mat cam_9d;
    cv::Rodrigues ( cam_3d, cam_9d ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
    
    cout<<"----------optional after--------------"<<endl;
    cout<<"cam_9d:"<<endl<<cam_9d<<endl;
    
    

    输出结果和EPnP求解的基本一致。

    Ceres Solver Report: Iterations: 15, Initial cost: 1.748561e+07, Final cost: 1.597795e+02, Termination: CONVERGENCE
    ----------------optional after--------------------
    cam_9d:
    [0.9979193163023975, -0.05138607093001037, 0.03894239161802245;
     0.05033839242150249, 0.9983556583913398, 0.02742308528253861;
     -0.04028752162859243, -0.02540572912495343, 0.9988650882519897]
     cam_t:-0.627937  -0.0368194  0.304997
    

    对代价函数进行封装后重写

    上面的写法封装性不好,因此借鉴书上第10讲的写法重写。

    (1)构建cost fuction

    template<typename T>
    inline bool CamProjectionWithDistortion(const T* cere_rot, const T* cere_tranf, const T* p_1, T* predictions){
        // Rodrigues' formula
        T p_2[3];
    
        AngleAxisRotatePoint(cere_rot, p_1, p_2);
       
        // camera[3,4,5] are the translation
        p_2[0] = p_2[0]+cere_tranf[0]; 
        p_2[1] = p_2[1]+ cere_tranf[1]; 
        p_2[2] = p_2[2]+ cere_tranf[2];
       
        T xp = p_2[0]/p_2[2];
        T yp = p_2[1]/p_2[2];
        
        T up=xp* 520.9+325.1;
        T vp=yp*521.0 + 249.7;
        
        predictions[0]=up;
        predictions[1]=vp;
    
        return true;
    }
    
    
    class SnavelyReprojectionError
    {
    public:
        SnavelyReprojectionError(Point3f p1,Point2f p2):_p1(p1),_p2(p2){}
     //    SnavelyReprojectionError( double* p1, double* p2):_p1(p1),_p2(p2){}
        template<typename T>
        bool operator()(const T* const cere_rot,
                        const T* const cere_tranf,
                        T* residual)const{                  
            T predictions[2];
            //把double类型转为T类型
            T p_1[3];
    
           p_1[0]=T(_p1.x);
           p_1[1]=T(_p1.y);
           p_1[2]=T(_p1.z);
           cout<<"point_3d: "<<p_1[0]<<" "<<p_1[1]<<"  "<<p_1[2]<<endl;
          CamProjectionWithDistortion(cere_rot, cere_tranf, p_1, predictions);
          
     //观测的在图像坐标下的值
     
        T u1=T(_p2.x);
        T v1=T(_p2.y);
           
        residual[0]=predictions[0]-u1;
        residual[1]=predictions[1]-v1;
    
            return true;
        }
    
        static ceres::CostFunction* Create( Point3f p1,  Point2f p2){
            return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError,2,3,3>(
                new SnavelyReprojectionError(p1,p2)));
        }
    
    private:
        Point3f _p1;
        Point2f _p2;
    };
    

    (2)构建问题求解

    for (int i = 0; i < pts_3d.size(); i++)
    {
    
        ceres::CostFunction *cost_function;
        cost_function = SnavelyReprojectionError::Create(pts_3d[i], pts_2d[i]);
        problem.AddResidualBlock(cost_function, nullptr, cere_rot, cere_tranf);
    }
    
    

    其他部分都一样,不再叙述。

    相关文章

      网友评论

          本文标题:ceres求解PnP--SLAM 十四讲第七章课后题

          本文链接:https://www.haomeiwen.com/subject/akgkbftx.html