美文网首页SLAM
ceres求解ICP--SLAM 十四讲第七章课后题

ceres求解ICP--SLAM 十四讲第七章课后题

作者: 远行_2a22 | 来源:发表于2018-08-10 14:55 被阅读0次

    by jie 2018.8.10
    参考:如何用ceres进行两帧之间的BA优化


    思路分析

    之前用ceres求解了pnp问题,3d-2d构建cost fuction是最小重投影。那3d-3d呢?
    也可以用最小重投影.思路是,将第一帧图像坐标系下的3d点经过旋转平移到第二帧图像下,然后通过相机内参求得其投影到图像坐标系下的坐标。第二帧观测到的与之匹配的3d点,也可以进行重投影得到图像坐标系下的坐标。两者就残差即可。

    先来完整代码:

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <ceres/ceres.h>
    #include <chrono>
    
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <Eigen/Core>
    #include <Eigen/Geometry>
    #include <Eigen/SVD>
    
    #include "common/rotation.h"
    using namespace std;
    using namespace cv;
    
    void find_feature_matches (
        const Mat& img_1, const Mat& img_2,
        std::vector<KeyPoint>& keypoints_1,
        std::vector<KeyPoint>& keypoints_2,
        std::vector< DMatch >& matches );
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam ( const Point2d& p, const Mat& K );
    
    void find_feature_matches (
        const Mat& img_1, const Mat& img_2,
        std::vector<KeyPoint>& keypoints_1,
        std::vector<KeyPoint>& keypoints_2,
        std::vector< DMatch >& matches );
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam ( const Point2d& p, const Mat& K );
    
    void pose_estimation_3d3d (
        const vector<Point3f>& pts1,
        const vector<Point3f>& pts2,
        Mat& R, Mat& t
    );
    
    
    struct cost_function_define
    {
      cost_function_define(Point3f p1,Point3f p2):_p1(p1),_p2(p2){}
      template<typename T>
      bool operator()(const T* const cere_r,const T* const cere_t,T* residual)const
      {
        T p_1[3];
        T p_2[3];
        p_1[0]=T(_p1.x);
        p_1[1]=T(_p1.y);
        p_1[2]=T(_p1.z);
        AngleAxisRotatePoint(cere_r,p_1,p_2);
        p_2[0]=p_2[0]+cere_t[0];
        p_2[1]=p_2[1]+cere_t[1];
        p_2[2]=p_2[2]+cere_t[2];
        const T x=p_2[0]/p_2[2];
        const T y=p_2[1]/p_2[2];
        const T u=x*520.9+325.1;
        const T v=y*521.0+249.7;
        T p_3[3];
        p_3[0]=T(_p2.x);
        p_3[1]=T(_p2.y);
        p_3[2]=T(_p2.z);
        const T x1=p_3[0]/p_3[2];
        const T y1=p_3[1]/p_3[2];
        const T u1=x1*520.9+325.1;
        const T v1=y1*521.0+249.7;
        residual[0]=u-u1;
        residual[1]=v-v1;
        return true;
      }
       Point3f _p1,_p2;
    };
    
    
    
    
    int main ( int argc, char** argv )
    {
        if ( argc != 5 )
        {
            cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl;
            return 1;
        }
        //-- 读取图像
        Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
        Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
    
        vector<KeyPoint> keypoints_1, keypoints_2;
        vector<DMatch> matches;
        find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
        cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
    
        // 建立3D点
        Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
        Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
        Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
        vector<Point3f> pts1, pts2;
    
        for ( DMatch m:matches )
        {
            ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
            ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ];
            if ( d1==0 || d2==0 )   // bad depth
                continue;
            Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
            Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K );
            float dd1 = float ( d1 ) /1000.0;
            float dd2 = float ( d2 ) /1000.0;
            pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) );
            pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) );
        }
    
        cout<<"3d-3d pairs: "<<pts1.size() <<endl;
        Mat R, t;
        pose_estimation_3d3d ( pts1, pts2, R, t );
        cout<<"ICP via SVD results: "<<endl;
        cout<<"R = "<<R<<endl;
        cout<<"t = "<<t<<endl;
        cout<<"R_inv = "<<R.t() <<endl;
        cout<<"t_inv = "<<-R.t() *t<<endl;
    
      for ( int i=0; i<5; i++ )
        {
            cout<<"p1 = "<<pts1[i]<<endl;
            cout<<"p2 = "<<pts2[i]<<endl;
            cout<<"(R*p2+t) = "<< 
                R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t
                <<endl;
            cout<<endl;
        }
    
        cout<<"----------------------------------"<<endl;
        cout<<"calling bundle adjustment"<<endl;
    
        
         double cere_rot[3],cere_tranf[3];
         cere_rot[0]=0;
         cere_rot[1]=0;
         cere_rot[2]=0;
         cere_tranf[0]=t.at<double>(0,0);
         cere_tranf[1]=t.at<double>(1,0);
         cere_tranf[2]=t.at<double>(2,0);
    
      //  bundleAdjustment( pts1, pts2, R, t );
        ceres::Problem problem;
      for(int i=0;i<pts1.size();i++)
      {
        ceres::CostFunction* costfunction=new ceres::AutoDiffCostFunction<cost_function_define,2,3,3>(new cost_function_define(pts1[i],pts2[i]));
        problem.AddResidualBlock(costfunction,NULL,cere_rot,cere_tranf);//注意,cere_rot不能为Mat类型
      }
    
      
      ceres::Solver::Options option;
      option.linear_solver_type=ceres::DENSE_SCHUR;
      //输出迭代信息到屏幕
      option.minimizer_progress_to_stdout=true;
      //显示优化信息
      ceres::Solver::Summary summary;
      //开始求解
      ceres::Solve(option,&problem,&summary);
      //显示优化信息
      cout<<summary.BriefReport()<<endl;
    
        // verify p1 = R*p2 + t
    
      cout<<"-----------optional after---------------"<<endl;
      
      Mat cam_3d = ( Mat_<double> ( 3,1 )<<cere_rot[0],cere_rot[1],cere_rot[2]);
    Mat cam_9d;
    cv::Rodrigues ( cam_3d, cam_9d ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
    
    cout<<"cam_9d:"<<endl<<cam_9d<<endl;
    
    cout<<"cam_t:"<<cere_tranf[0]<<"  "<<cere_tranf[1]<<"  "<<cere_tranf[2]<<endl;
      Mat tranf_3d = ( Mat_<double> ( 3,1 )<<cere_tranf[0],cere_tranf[1],cere_tranf[2]);
    
    
      for ( int i=0; i<5; i++ )
        {
            cout<<"p1 = "<<pts1[i]<<endl;
            cout<<"p2 = "<<pts2[i]<<endl;
            cout<<"(R*p1+t) = "<< 
                cam_9d * (Mat_<double>(3,1)<<pts1[i].x, pts1[i].y, pts1[i].z) + tranf_3d
                <<endl;
            cout<<endl;
        }
      
        
    }
    
    void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                                std::vector<KeyPoint>& keypoints_1,
                                std::vector<KeyPoint>& keypoints_2,
                                std::vector< DMatch >& matches )
    {
        //-- 初始化
        Mat descriptors_1, descriptors_2;
        // used in OpenCV3 
        Ptr<FeatureDetector> detector = ORB::create();
        Ptr<DescriptorExtractor> descriptor = ORB::create();
        // use this if you are in OpenCV2 
        // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
        // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
        Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");
        //-- 第一步:检测 Oriented FAST 角点位置
        detector->detect ( img_1,keypoints_1 );
        detector->detect ( img_2,keypoints_2 );
    
        //-- 第二步:根据角点位置计算 BRIEF 描述子
        descriptor->compute ( img_1, keypoints_1, descriptors_1 );
        descriptor->compute ( img_2, keypoints_2, descriptors_2 );
    
        //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
        vector<DMatch> match;
       // BFMatcher matcher ( NORM_HAMMING );
        matcher->match ( descriptors_1, descriptors_2, match );
    
        //-- 第四步:匹配点对筛选
        double min_dist=10000, max_dist=0;
    
        //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            double dist = match[i].distance;
            if ( dist < min_dist ) min_dist = dist;
            if ( dist > max_dist ) max_dist = dist;
        }
    
        printf ( "-- Max dist : %f \n", max_dist );
        printf ( "-- Min dist : %f \n", min_dist );
    
        //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
            {
                matches.push_back ( match[i] );
            }
        }
    }
    
    Point2d pixel2cam ( const Point2d& p, const Mat& K )
    {
        return Point2d
               (
                   ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
                   ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
               );
    }
    
    void pose_estimation_3d3d (
        const vector<Point3f>& pts1,
        const vector<Point3f>& pts2,
        Mat& R, Mat& t
    )
    {
        Point3f p1, p2;     // center of mass
        int N = pts1.size();
        for ( int i=0; i<N; i++ )
        {
            p1 += pts1[i];
            p2 += pts2[i];
        }
        p1 = Point3f( Vec3f(p1) /  N);
        p2 = Point3f( Vec3f(p2) / N);
        vector<Point3f>     q1 ( N ), q2 ( N ); // remove the center
        for ( int i=0; i<N; i++ )
        {
            q1[i] = pts1[i] - p1;
            q2[i] = pts2[i] - p2;
        }
    
        // compute q1*q2^T
        Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
        for ( int i=0; i<N; i++ )
        {
            W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
        }
        cout<<"W="<<W<<endl;
    
        // SVD on W
        Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
        Eigen::Matrix3d U = svd.matrixU();
        Eigen::Matrix3d V = svd.matrixV();
        cout<<"U="<<U<<endl;
        cout<<"V="<<V<<endl;
    
        Eigen::Matrix3d R_ = U* ( V.transpose() );
        Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z );
    
        // convert to cv::Mat
        R = ( Mat_<double> ( 3,3 ) <<
              R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ),
              R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ),
              R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 )
            );
        t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) );
    }
    
    

    代码分析

    代码前面是svd求解icp的方法。
    代码后面是ceres求解。
    注意几点:

    • 这里的R不是旋转矩阵,也不是四元数表示的,而是用欧拉角表示的。
      通过函数 AngleAxisRotatePoint(cere_r,p_1,p_2)可以对3D点进行旋转。相当于用旋转矩阵去左乘。
    • 观测值是两帧观测到的相匹配的3D点,优化变量是相机外参
    • 书上求解的结果是第二帧到第一帧的变化矩阵,而这里我求解的是第一帧到第二帧的变化矩阵,因此两者互逆。
    • 其他参考上一篇文章:
      ceres求解PnP--SLAM 十四讲第七章课后题

    相关文章

      网友评论

        本文标题:ceres求解ICP--SLAM 十四讲第七章课后题

        本文链接:https://www.haomeiwen.com/subject/ykokbftx.html