1.熟悉
第一个知识是“学习区”。心理学家把我们可能面对的学习内容分成了三个区:舒适区、学习区和恐慌区。舒适区的内容对你来说太容易,恐慌区的内容太难,刻意练习要求你始终在二者中间一个特别小的学习区里学习 —— 这里的难度对你恰到好处。
这个理论不可能是错的。但是因为现在“跳出舒适区”已经成了一句口号,有些人就产生了逆反心理,说我好不容易找到一个舒适区发挥特长,为什么要跳出来呢?关键在于这里说的是“学习”!也许你在舒适区赚钱最多,但那是另一回事 —— 要想提高技艺,你就只能在学习区。
第二个知识是“心流”。这个概念最早是米哈里·契克森米哈赖在《心流:最优体验心理学》这本书里提出来的。契克森米哈赖说,要想在工作中达到心流状态,这项工作的挑战和你的技能必须形成平衡。他还专门用一张图说明这个道理 ——
如果工作的挑战大大低于你的技能,你会觉得这个工作很无聊。如果工作的挑战大大超出你的技能,你会感到焦虑。而如果难度和技能正好匹配,你一上来并不知道该怎么做,但是调动自己最高水平的技能、再稍微突破一点,你正好能解决这个问题,那就是心流的体验。这是一个奇妙的感觉,你沉浸在工作之中忘记了时间的流动,甚至可能忘记自身的存在。
第三个知识是我们专栏经常提到的一个公式,叫“喜欢 = 熟悉 + 意外”。一个文艺作品要想最大限度地吸引观众,必须既提供观众熟悉的东西,又制造意外。
好,现在你发现没有,这三个知识说的其实是一回事。学习区、心流、喜欢,说的是已知和未知、简单和困难、熟悉和意外的搭配 —— 从信息论的角度来说,它们说的都是“旧信息”和“新信息”的配比!
那我现在问你一个问题,这个配比应该是多少呢?
2.意外
以前我们并没有量化这些理论,我们只是泛泛地说要加入一定的难度和意外。而我今天要讲的这个研究,恰恰告诉我们一个神奇的答案,说这个问题是有最优数值解的:这个数值是15.87%。
亚利桑那大学和布朗大学的研究者刚刚贴出一篇论文的预印本,叫《最优学习的85%规则》[1]。这篇论文还没有正式发表,《科学美国人》上的一个博客已经率先报道 [2],Twitter 上也有好几个人讨论。
我仔细研读了这篇论文,感觉非常新颖而且非常重要,它将来会获得大量的引用。但是我认为一些讨论误解了这篇论文的意思。我先说说这篇论文到底说了什么。
我们知道现在人工智能本质上是机器学习。我们弄一个神经网络,用大量的数据去训练这个网络,让网络学会自己做判断。网络内部有大量参数随着训练不断变化,就相当于人脑在学习中提高技艺。
每一次训练,都是先让网络对数据做个自己的判断,然后数据再给它一个反馈。如果网络判断正确,它就会加深巩固现有的参数;如果判断错了,它就调整参数。这跟人脑的学习也很像:只有当你判断错误的时候,才说明这个知识对你是新知识,你才能学习提高。
研究者可以决定用什么难度的数据去“喂”这个网络。如果数据难度太低,网络每次都能猜对,那显然无法提高判断水平;如果数据难度太高,网络总是猜错,那它的参数就会东一下西一下变来变去,就会无所适从。这项研究问的问题是,每次训练中网络判断的错误率是多少,才是最优的呢?
研究者首先用了一个比较简单的数学模型做理论推导,又用了一个AI神经网络学习算法和一个模拟生物大脑的神经网络模型做模拟实验,结果得出一个精确解:15.87%。
就是说,当你训练一个东西的时候,你给它的内容中应该有大约85%是它熟悉的,有15%是它感到意外的。
研究者把这个结论称为“85%规则”,我们干脆就把15.87%叫做“最佳意外率”。这个数值就是学习的“甜蜜点”。
3.最快而且最爽
找到最佳意外率有两个好处。
第一,它让你的学习速度最快。我们来看看模拟实验的结果。下面这是一张等值曲线图,说的是判断出错率和 AI 训练效率的。
研究者理论推导的结果是,15.87%的意外率能让训练时间相对于其他数值以指数下降!
网友评论