美文网首页
Leetcode-240题:Search a 2D Matrix

Leetcode-240题:Search a 2D Matrix

作者: 八刀一闪 | 来源:发表于2016-10-08 22:15 被阅读20次

    题目

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

    Integers in each row are sorted in ascending from left to right.
    Integers in each column are sorted in ascending from top to bottom.
    For example,

    Consider the following matrix:

    [
    [1, 4, 7, 11, 15],
    [2, 5, 8, 12, 19],
    [3, 6, 9, 16, 22],
    [10, 13, 14, 17, 24],
    [18, 21, 23, 26, 30]
    ]
    Given target = 5, return true.

    Given target = 20, return false.

    思路

    从矩阵右上角开始考虑,如果当前元素比所求大,跳转到左一列;如果比所求小,跳到下一行;如果是所求,直接返回。

    代码

    class Solution(object):
    
        def binarySearch(self, nums, l, r, target):
            if l > r:
                return False
            m = l + (r-l)/2
            if nums[m] == target:
                return True
            elif nums[m] > target:
                return self.binarySearch(nums, l, m-1, target)
            else:
                return self.binarySearch(nums, m+1, r, target)
    
        def searchMatrix(self, matrix, target):
            """
            :type matrix: List[List[int]]
            :type target: int
            :rtype: bool
            """
            if matrix==None or len(matrix)==0:
                return False
            m = len(matrix)
            n = len(matrix[0])
            i = 0
            j = n-1
            while i!=m-1 and j!=0:
                if matrix[i][j] == target:
                    return True
                elif matrix[i][j] < target:
                    i += 1
                else:
                    j -= 1
            if i == m-1:
                return self.binarySearch(matrix[i][:j+1],0,j,target)
            else:
                return self.binarySearch([matrix[k][j] for k in range(i,m)],0,m-i-1,target)
    
    

    相关文章

      网友评论

          本文标题:Leetcode-240题:Search a 2D Matrix

          本文链接:https://www.haomeiwen.com/subject/alcpyttx.html