t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来。此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化。
# _*_ coding:utf-8 -*-
from sklearn.manifold import TSNE
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
class data():
def __init__(self, data, target):
self.data = data
self.target = target
# 加载数据集
iris = load_iris()
# 共有150个例子, 数据的类型是numpy.ndarray
print(iris.data.shape)
# 对应的标签有0,1,2三种
print(iris.target.shape)
# 使用TSNE进行降维处理
tsne = TSNE(n_components=2, learning_rate=100).fit_transform(iris.data)
# 使用PCA 进行降维处理
pca = PCA().fit_transform(iris.data)
# 设置画布的大小
plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.scatter(tsne[:, 0], tsne[:, 1], c=iris.target)
plt.subplot(122)
plt.scatter(pca[:, 0], pca[:, 1], c=iris.target)
plt.colorbar()
plt.show()
图片
网友评论