第一次看到这种数据结构还是刚接触ocean base架构的时候。粗略扫了几眼,以为是一个简单的二级索引,没有仔细考虑就略过了。后来去北京出差,经神夜路点播,遂明白这种链表式结构的简约而不简单,有一种四两拨千斤的优雅。
Skip lists are a data structure that can be used in place of balanced trees. Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.
--William Pugh
相比于红黑树,B树,AVL树,跳表的实现相当简单,同时,由于其多维链表的特性,使得跳表可以支持无锁的多读一写。(链表的多读一写无锁实现方式这里就不展开了)。
不同于B树,跳表的平衡性依靠随机算法,在正常情况下,该结构的查找,插入,删除的时间复杂度都是logN。
先从一维链表开始,我们知道在链表中查找一个元素I的话,需要将整个链表遍历一次。
如果是说链表是排序的,并且节点中还存储了指向前面第二个节点的指针的话,那么在查找一个节点时,仅仅需要遍历N/2个节点即可。
这基本上就是跳表的核心思想,其实也是一种通过“空间来换取时间”的一个算法。
下面我们来看一个4层跳表示例:
查找时首先从高层开始查找,之后逐渐降低层次靠近数据,完成定位。
插入操作:
由于跳表数据结构整体上是有序的,所以在插入时,需要首先查找到合适的位置,然后就是修改指针(和链表中操作类似),然后更新跳表的level变量。
补充一个数据节点层次确定算法:
int height = 1;
while (height < kMaxHeight && ((rnd_.Next() % kBranching) == 0))
{
height++;
}
可以发现层级越高的节点越少,因此跳表整体的指针开销并不高。 相比于同级别的树形实现,跳表具有更快的速度,更低的空间开销和更简单的实现。
/*
·* skipList.h
·*
·* ·Created on: 2013年8月7日
·* · · ·Author: sigh.xy
·*/
#ifndef SKIPLIST_H_
#define SKIPLIST_H_
#include <iostream>
#include <stack>
//rand
#include<stdlib.h>
template <class Key = int, class Value = int>
class Node
{
public:
Key key;
Value value;
Node(Key k, Value v) : key(k), value(v){}
Node(){}
};
template <class Key = int, class Value = int>
class Element
{
Node<Key, Value> node;
Element** next;
public:
Element() : next(NULL) {}
Element(Node<Key, Value> node, int level)
{
this->node = node;
next = new Element*[level];
for (int i = 0; i < level; i++)
{
next[i] = NULL;
}
}
void setNext(int place, Element* nElement)
{
next[place] = nElement;
}
Element* & getNext(int place)
{
return next[place];
}
Key getKey()
{
return node.key;
}
Value getValue()
{
return node.value;
}
~Element()
{
if (next)
{
delete[] next;
}
}
};
//declare
template <class Key, class Value>
class SkipIterator;
template <class Key = int, class Value = int, int MAXLEVEL = 4>
class SkipList
{
//head
Element<Key, Value>** head;
int randLevel(int level = MAXLEVEL);
void findWay(Key key, std::stack<Element<Key, Value>** >& pStack);
public:
typedef SkipIterator<Key, Value> Iterator;
SkipList()
{
head = new Element<Key, Value>*[MAXLEVEL];
for (int i = 0; i < MAXLEVEL; i++)
{
head[i] = NULL;
}
}
Value find(Key key);
bool insert(Key key, Value value);
Iterator begin()
{
return head[0];
}
Iterator end()
{
return Iterator();
}
//another kind of insert
//bool delKey(Key key);
~SkipList()
{
Element<Key, Value>* cur = head[0];
while (cur)
{
Element<Key, Value>* tmp = cur;
cur = cur->getNext(0);
delete tmp;
}
}
};
//查找数据
template <class Key, class Value, int MAXLEVEL>
Value SkipList<Key, Value, MAXLEVEL>::find(const Key key)
{
if (NULL == head)
{
return (Value) 0;
}
//std::cout << "ok" << std::endl;
int rawL = MAXLEVEL - 1;
Element<Key, Value>* cur = NULL;
//find the first < place
while (rawL >= 0)
{
if (head[rawL] && head[rawL]->getKey() == key)
{
return head[rawL]->getValue();
}
else if (head[rawL] && head[rawL]->getKey() < key)
{
cur = head[rawL];
break;
}
rawL--;
}
//std::cout << "rawL = " << rawL << std::endl;
while (rawL >= 0)
{
if (cur && cur->getKey() == key)
{
return cur->getValue();
}
else if (cur->getNext(rawL) && cur->getNext(rawL)->getKey() <= key)
{
cur = cur->getNext(rawL);
}
else
{
rawL--;
}
}
return (Value) 0;
}
//通过栈记录查找路径,用于插入操作。
template <class Key, class Value, int MAXLEVEL>
void SkipList<Key, Value, MAXLEVEL>::findWay(Key key,
std::stack<Element<Key, Value>** >& pStack)
{
int rawL = MAXLEVEL - 1;
Element<Key, Value>* cur = NULL;
//find the first < place
while (rawL >= 0)
{
if (head[rawL] && head[rawL]->getKey() < key)
{
cur = head[rawL];
break;
}
pStack.push(&head[rawL]);
rawL--;
}
while (rawL >= 0)
{
if (cur->getNext(rawL) && cur->getNext(rawL)->getKey() <= key)
{
cur = cur->getNext(rawL);
}
else
{
pStack.push(&cur->getNext(rawL));
rawL--;
}
}
}
//插入操作
template <class Key, class Value, int MAXLEVEL>
bool SkipList<Key, Value, MAXLEVEL>::insert(Key key, Value value)
{
int level = randLevel();
Element<Key, Value>* element =
new Element<Key, Value>(Node<Key, Value>(key, value), level);
std::stack<Element<Key, Value>**> pStack;
findWay(key, pStack);
for (int i = 0; i < level; i++)
{
element->getNext(i) = *pStack.top();
*(pStack.top()) = element;
//std::cout << "head = " << head[0]->getValue() << std::endl;
pStack.pop();
}
//std::cout << head[0]->getNext(0) << std::endl;
return true;
}
template <class Key, class Value, int MAXLEVEL>
int SkipList<Key, Value, MAXLEVEL>::randLevel(int level)
{
int height = 1;
while (height < MAXLEVEL && ((rand() % level) == 0))
{
height++;
}
return height;
}
//iterator
template <class Key, class Value>
class SkipIterator
{
private:
Element<Key, Value>* element;
public:
typedef Element<Key, Value> EType;
SkipIterator(Element<Key, Value>* e) : element(e) {}
SkipIterator()
{
element = NULL;
}
EType& operator*()
{
return *element;
}
void operator++()
{
element = element->getNext(0);
}
void operator++(int)
{
++*this;
}
bool operator!= (SkipIterator<Key, Value> right)
{
return this->element != right.element;
}
};
#endif /* SKIPLIST_H_ */
基于模版的某种实现方式没有做很严格的测试,因此不保证正确性。
(原文时间2013-8-5)
网友评论