美文网首页行人计数和分类
计算机视觉<1.数据集>

计算机视觉<1.数据集>

作者: 南风无影 | 来源:发表于2017-12-13 14:10 被阅读52次

    基于深度学习的计算机视觉,可能都不可避免要训练自己的数据集。

    1. 什么是数据集

    参考各类数据集简介

    以coco为例
    特点是数据集庞大,有80类,识别很精准
    yolo官方推荐的就是coco的(yolo.cfg, yolo.wrights)


    40.jpg 63.jpg

    可以看到,coco可以检测到别的没有的物体;
    以上图片截取自网站hdvidzpro中的视频:(Hdvidz.in)_8K-4x-YOLO-Tiny-YOLO-VOC-COCO-YOLO9000-Object-Detection-1.mp4。

    coco的官网中,我们看到图片都是有做segment, 比如

    coco1.png coco2.png

    为什么要分割区域呢?

    某些情况下,我们需要对图像的每个像素进行分类,也被称作是图像的分割。想象一下,假如有一个巨大的图片数据集,需要给人脸打上马赛克,这样我们就不必得到所有人的许可之后才能发布这些照片。例如,谷歌街景都对行人的脸做了模糊化处理。当然,我们只需要对图片中的人脸进行模糊处理,而不是所有的内容。图片分割可以帮助我们实现类似的需求。我们可以分割得到属于人脸的那部分像素,并只对它们进行模糊处理。


    这个segment的坐标大致是这样的,有很多点,连成一个轮廓

    segment.png

    2. 关于标注和标注工具

    数据集的标注,包含了检测(detect),分割(segment), detect里面主要数据是bbox的坐标和class, 如果要用到segment属性

    000793.jpg

    xml文件

    <annotation>
        <folder>VOC2012</folder>
        <filename>2007_000793.jpg</filename>
        <source>
            <database>The VOC2007 Database</database>
            <annotation>PASCAL VOC2007</annotation>
            <image>flickr</image>
        </source>
        <size>
            <width>500</width>
            <height>375</height>
            <depth>3</depth>
        </size>
        <segmented>1</segmented>
        <object>
            <name>person</name>
            <pose>Rear</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>289</xmin>
                <ymin>100</ymin>
                <xmax>316</xmax>
                <ymax>183</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Rear</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>241</xmin>
                <ymin>111</ymin>
                <xmax>270</xmax>
                <ymax>180</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Rear</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>218</xmin>
                <ymin>107</ymin>
                <xmax>236</xmax>
                <ymax>178</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Rear</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>402</xmin>
                <ymin>67</ymin>
                <xmax>467</xmax>
                <ymax>259</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Frontal</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>65</xmin>
                <ymin>110</ymin>
                <xmax>84</xmax>
                <ymax>161</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Frontal</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>96</xmin>
                <ymin>107</ymin>
                <xmax>114</xmax>
                <ymax>159</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>100</xmin>
                <ymin>78</ymin>
                <xmax>190</xmax>
                <ymax>282</ymax>
            </bndbox>
        </object>
        <object>
            <name>person</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>1</difficult>
            <bndbox>
                <xmin>273</xmin>
                <ymin>103</ymin>
                <xmax>295</xmax>
                <ymax>182</ymax>
            </bndbox>
        </object>
        <object>
            <name>bicycle</name>
            <pose>Left</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>151</xmin>
                <ymin>160</ymin>
                <xmax>310</xmax>
                <ymax>280</ymax>
            </bndbox>
        </object>
        <object>
            <name>bus</name>
            <pose>Frontal</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>2</xmin>
                <ymin>80</ymin>
                <xmax>51</xmax>
                <ymax>135</ymax>
            </bndbox>
        </object>
    </annotation>
    
    

    我们看到,即使标注了<segmented>1</segmented>,但是并没有对应的轮廓坐标,而且在voc_label.py和其它代码里,并没有对segmented对应的处理。

    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    
    sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
    
    classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    
    
    def convert(size, box):
        dw = 1./size[0]
        dh = 1./size[1]
        x = (box[0] + box[1])/2.0
        y = (box[2] + box[3])/2.0
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x*dw
        w = w*dw
        y = y*dh
        h = h*dh
        return (x,y,w,h)
    
    def convert_annotation(year, image_id):
        in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
        out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
        tree=ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
    
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            bb = convert((w,h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    
    wd = getcwd()
    
    for year, image_set in sets:
        if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
            os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
        image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
        list_file = open('%s_%s.txt'%(year, image_set), 'w')
        for image_id in image_ids:
            list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
            convert_annotation(year, image_id)
        list_file.close()
    

    相关文章

      网友评论

        本文标题:计算机视觉<1.数据集>

        本文链接:https://www.haomeiwen.com/subject/aqjaixtx.html