# 利用批量生成器拟合模型
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50
-
train_generator
: Python 生成器,可以不停地生成输入和目标组成的批量;
-
steps_per_epoch
:从生成器中抽取 steps_per_epoch 个批量后(即运行了 steps_per_epoch 次梯度下降),拟合过程将进入下一个轮次。本例中,每个批量包含 20 个样本,所以读取完所有 2000 个样本需要 100个批量。
训练完成后保存模型
# 保存模型
model.save('cats_and_dogs_small_1.h5')
绘制训练过程中的损失曲线和精度曲线
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label = 'Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label = 'Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
网友评论