美文网首页
[转载]最大流之Ford-Fulkerson方法详解及实现

[转载]最大流之Ford-Fulkerson方法详解及实现

作者: zwithz | 来源:发表于2018-01-27 13:49 被阅读0次

    转自:http://blog.csdn.net/ivan_zgj/article/details/51580993

    最大流问题常常出现在物流配送中,可以规约为以下的图问题。最大流问题中,图中两个顶点之间不能同时存在一对相反方向的边。

    image

    边上的数字为该条边的容量,即在该条边上流过的量的上限值。最大流问题就是在满足容量限制条件下,使从起点s到终点t的流量达到最大。在介绍解决最大流问题的Ford-Fulkerson方法之前,先介绍一些基本概念。

    1. 残存网络与增广路径

    根据图和各条边上的流可以画出一幅图的残存网络如下所示。左图为流网络,右图为残存网络,其中流网络中边上的数字分别是流量和容量,如10/12,那么10为边上的流量,12为边的容量。残存网络中可能会存在一对相反方向的边,与流网络中相同的边代表的是流网络中该边的剩余容量,在流网络中不存在的边代表的则是其在流网络中反向边的已有流量,这部分流量可以通过“回流”减少。例如,右图残存网络中,边<s,v1>的剩余容量为4,其反向边<v1.s>的值为12,即左图流网络中的边<s,v1>的流量。在残存网络中,值为0的边不会画出,如边<v1,v2>。

    image image

    残存网络描述了图中各边的剩余容量以及可以通过“回流”删除的流量大小。在Ford-Fulkerson方法中,正是通过在残存网络中寻找一条从s到t的增广路径,并对应这条路径上的各边对流网络中的各边的流进行修改。如果路径上的一条边存在于流网络中,那么对该边的流增加,否则对其反向边的流减少。增加或减少的值是确定的,就是该增广路径上值最小的边。

    2. Ford-Fulkerson方法

    Ford-Fulkerson方法的正确性依赖于这个定理:当残存网络中不存在一条从s到t的增广路径,那么该图已经达到最大流。这个定理的证明及一些与其等同的定理可以参考《算法导论》。

    Ford-Fulkerson方法的伪代码如下。其中<u,v>代表顶点u到顶点v的一条边,<u,v>.f表示该边的流量,c是边容量矩阵,c(i,j)表示边<i,j>的容量,当边<i,j>不存在时,c(i,j)=0。e为残存网络矩阵,e(i,j)表示边<i,j>的值,当边<i,j>不存在时,e(i,j)=0。E表示边的集合。f表示流网络。

    Ford-Fulkerson
    
        for <u,v> ∈ E
    
            <u,v>.f = 0
    
        while find a route from s to t in e
    
            m = min(<u,v>.f, <u,v>  ∈ route)
    
            for <u,v> ∈ route
    
                if <u,v>  ∈ f
    
                    <u,v>.f = <u,v>.f + m
    
                else
    
                    <v,u>.f = <v,u>.f - m
    

    Ford-Fulkerson方法首先对图中的所有边的流量初始化为零值,然后开始进入循环:如果在残存网络中可以找到一条从s到t的增广路径,那么要找到这条这条路径上值最小的边,然后根据该值来更新流网络。

    Ford-Fulkerson有很多种实现,主要不同点在于如何寻找增广路径。最开始提出该方法的Ford和Fulkerson同学在其论文中都是使用广度优先搜索实现的,其时间复杂度为O(VE),整个算法的时间复杂度为O(VE^2)。

    下面我给出一个应用Bellman-Ford计算单源最短路径的算法实现寻找一条增广路径,对于用邻接矩阵表示的图来说,该实现的时间复杂度为O(V^3),对于用邻接表表示的图来说,时间复杂度则为O(VE)。

    // 寻找增广路径
    int findRoute(int **e, int vertexNum, int *priorMatrix, int s,int t)
    {
        s--; t--;
        int *d = (int *)malloc(sizeof(int)*vertexNum);
        // initialize
        for (int i = 0; i < vertexNum; i++)
        {
            d[i] = 0;
            priorMatrix[i] = -1;
        }
        d[s] = 1;
        // 反复用边<i,j>做松弛操作,将<s,...,j>更新为<s,...,i,j>
        for (int k = 0; k < vertexNum; k++)
        {
            for (int i = 0; i < vertexNum; i++)
            {
                for (int j = 0; j < vertexNum; j++)
                {
                    if (d[j] == 0)
                    {
                        d[j] |= (d[i] & (*((int*)e + i*vertexNum + j) > 0));
                        if (d[j] == 1)
                        {
                            priorMatrix[j] = i;
                        }
                    }
                }
            }
        }
        if (d[t] == 0)  return 0;
    
        int min = INT_MAX;
        int pre = priorMatrix[t];
        while (pre != -1)
        {
            if (min > *((int*)e + pre*vertexNum + t))
            {
                min = *((int*)e + pre*vertexNum + t);
            }
            t = pre;
            pre = priorMatrix[t];
        }
        return min;
    }
    

    该实现应用了计算图的最短路径方法中的思想,对图中的边反复在松弛操作,从而计算得到一个源点到其它所有点的路径。这里我们不需要计算最短路径,只要找到一条可行路径即可。上述findRoute方法的实现原理可以参考我前面的一篇文章 单源最短路径之Bellman-Ford算法 。在寻找路径的同时,我们还要记录一个前驱子图priorMatrix,其本质上是一个一位数组,其记录了从顶点s到其它顶点的一条可行路径上的终点的前一个顶点。于是我们就可以从前驱子图中找到从s到t的一条完整路径。其正确性由图的最短路径的计算方法思想保证。具体可以参考我另一篇博客 结点对最短路径之Floyd算法详解及实现

    下面给出根据图和流网络计算残存网络的代码。

    // 计算残存网络
    void calculateENet(int **c, int vertexNum, int **f, int **e)
    {
        for (int i = 0; i < vertexNum; i++)
        {
            for (int j = 0; j < vertexNum; j++)
            {
                int a = *((int*)c + i*vertexNum + j);
                if (a != 0)
                {
                    *((int*)e + i*vertexNum + j) = a - *((int*)f + i*vertexNum + j);
                    *((int*)e + j*vertexNum + i) = *((int*)f + i*vertexNum + j);
                }
                else
                {
                    *((int*)e + i*vertexNum + j) = 0;
                }
            }
        }
    }
    

    下面给出Ford-Fulkerson方法的实现代码。

    /**
    * Ford-Fulkerson方法的一种实现
    * @param c 二维矩阵,记录每条边的容量
    * @param vertexNum 顶点个数,包括起点和终点
    * @param s 起点编号,编号从1开始
    * @param t 终点编号
    * @param f 输出流网络矩阵,二维矩阵,记录每条边的流量
    */
    void Ford_Fulkerson(int **c, int vertexNum, int s, int t, int **f)
    {
        int *e = (int *)malloc(sizeof(int)*vertexNum*vertexNum);    // 残存网络
        int *priorMatrix = (int *)malloc(sizeof(int)*vertexNum);    // 增广路径的前驱子图
    
        // initialize
        for (int i = 0; i < vertexNum;i++)
        {
            for (int j = 0; j < vertexNum; j++)
            {
                *(f + i*vertexNum + j) = 0;
            }
        }
    
        while (1)
        {
            calculateENet(c, vertexNum, (int **)f, (int **)e);  // 计算残存网络
            int min;
            if ((min = findRoute((int **)e, vertexNum, priorMatrix, s, t)) == 0)    // 寻找增广路径及其最小流值
            {
                break;
            }
            int pre = priorMatrix[t - 1];
            int next = t - 1;
            while (pre != -1)       // 按增广路径更新流网络
            {
                if (*((int*)c + pre * vertexNum + next) != 0)
                {
                    *((int*)f + pre * vertexNum + next) += min;
                }
                else
                {
                    *((int*)f + next * vertexNum + pre) -= min;
                }
                next = pre;
                pre = priorMatrix[pre];
            }
        }
    }
    

    3. 测试及效果

    下面给出用于测试的代码。

    void testFord()
    {
        int c[6][6] = { 0,      16,     13,     0,      0,      0,
                        0,      0,      0,      12,     0,      0,
                        0,      4,      0,      0,      14,     0,
                        0,      0,      9,      0,      0,      20,
                        0,      0,      0,      7,      0,      4,
                        0,      0,      0,      0,      0,      0   };
        int f[6][6];
        Ford_Fulkerson((int **)c, 6, 1, 6, (int **)f);
        for (int i = 0; i < 6; i++)
        {
            for (int j = 0; j < 6; j++)
            {
                int flow = f[i][j];
                if (flow != 0)
                {
                    printf("%d -> %d : %d\n", i + 1, j + 1, flow);
                }
            }
        }
    }
    

    上述代码构造的图如下所示。

    image

    运行结果如下,其中1为顶点s,5为顶点t,2~5依次为顶点v1、v2、v3和v4。

    image

    流网络和残存网络如下所示,其中左图为流网络,右图为残存网络。

    image

    我们可以看到残存网络中的确已经不存在一条从s到t的路径了。此时Ford-Fulkerson方法的循环应该终止,最大流量为各边的流量相加之和,即76。

    完整的程序可以看到我的github项目 数据结构与算法

    这个项目里面有本博客介绍过的和没有介绍的以及将要介绍的《算法导论》中部分主要的数据结构和算法的C实现,有兴趣的可以fork或者star一下哦~ 由于本人还在研究《算法导论》,所以这个项目还会持续更新哦~ 大家一起好好学习~

    相关文章

      网友评论

          本文标题:[转载]最大流之Ford-Fulkerson方法详解及实现

          本文链接:https://www.haomeiwen.com/subject/arynaxtx.html