1. 创建一个NumPy数组
x = np.array([list])
2. 访问数组属性
x.ndim # the number of dimensions of the array
x.size # the total number of elements of the array
x.shape # returns a tuple of integers that indicate the number of elements stored along each dimension of the array.
x.dtype # type of the ndarray
3. 基本数组操作
# 为NumPy数组添加元素4
x = np.append(x, 4)
# 删除NumPy数组中第一个元素
x = np.delete(x, 0)
# 将NumPy数组中元素排序
x = np.sort(x)
# 创建一个数组(注意"arange"只有一个"r")
x = np.arange(2, 10, 3)
4. Changing the shape
# 将数组变为3行,2列的二维数组
x = np.reshape(3, 2)
# 将数组变为一维数组
x = np.reshape(7)
5. Indexing and slicing
NumPy arrays can be indexed and sliced the same way that Python lists are.
import numpy as np
x = np.arange(1, 10)
print(x)
print(x[0:2])
print(x[5:])
print(x[:2])
print(x[-3:])
#打印特定条件下的数组
print(x[x<4])
print(x[(x > 5) & (x%2 == 0)])
6. 数组计算
# The sum of all elements
x.sum()
# Get the smallest / largest element
x.min()
x.max()
# Multiply all elements by 2
y = x * 2
7. Statistics
print(np.mean(x))
print(np.median(x))
print(np.var(x))
print(np.std(x))
网友评论