美文网首页
R语言基础知识汇总

R语言基础知识汇总

作者: 付德刚Q | 来源:发表于2018-01-15 16:29 被阅读0次

http://blog.sina.com.cn/s/blog_6bc5205e0102vma9.html

install.packages

1、从网络上直接安装

install.packages("包名字",lib="安装目录",repos="包所在的网址))。也可通过参数contriburl指定包所在的网址

例:

install.packages(“stepNorm”,contriburl=”http://www.your.url”,dependencies=TRUE)

2、本地安装

1)install.packages("包文件的完整路径“)

2)在命令行下(不是R窗口)直接输入:R CMD INSTALL 包文件的完整路径

installed.packages()# 查看已经安装的包 配合install.packages() 写一个循环可以批量安装包 

update.packages()#更新已安装的包

path.packages() #查看已经安装了哪些包 

.libPaths()#查看包的安装目录

.libpaths('youlibray')#修改包的安装目录

.libpaths(c('newlibray','oldlibray')

library("your package", lib.loc="/yourlibrary/")#下载到临时文件夹的调用方法

R.version 、R.version.string 查看当前版本

R帮助函数

help.start( )打开帮助文档首页

help()?

?

#读取前五行数据

data <- read.table("datatable.txt", nrows = 5)

getwd();

setwd('D:\\RStudio\\www');

data2 <- read.csv('new.csv',encoding = 'UTF-8');

#查看第一列数

data2[,1];

#将第一列数改为分类结构

data2[,1] <- factor(data2[,1]);

data2[,1];

#统一映射为另外一个数据标签

data2[,1] <- factor(data2[,1],labels = c('三年一班','三年二班','三年三班'));

data2[,1];;

data_1 <- read.csv('new_1.csv',encoding = 'utf8');

fix(data_1);

data_1 [,1] <- factor(data_1[,1],levels = c(1,2,3),labels = c('三年一班','三年二班','三年三班'));

data_1;

#转换为字符串的向量

as.vector(data_1[,1]);

data_1;

#转换为数字向量

as.numeric(data_1[,1]);

#连续变量的离散化

score <- data_1[,3];

score1 <- cut(score,breaks = 3);

score1;

#切分成自己设置的组

score2 <- cut(score,breaks = c(79,100,120,161));

score2;

#一个有序因子

score3 <- ordered(score1,labels=c('bad','ok','good'));

score3;

table(score3);

#可排序的离散分类结构

datax <- read.csv('new.csv',encoding = 'UTF-8');

datax[,1] <- 

  ordered(datax[,1],

  levels <- c(1,3,2),

  labels <- c('一班','三班','二班')

);

table(datax[,1]);

datax[order(datax[,1]),];

datax[order(datax[,3]),];

#list 的创建方式 

#无tag试

j <- list('a',500,T);

#有tag方式

y <- list(name='fudegang',salary=10000,union=T);

#list的访问方式

#1list_name$tag_name

y$name;

y$salary;

#2list_name[[tga]]

y[['name']];

#3list_name[[index]]

y[[1]];

#以数组的形式访问返回的是整个list

y[];

y[1]$name;

#访问标签

labels(y);

labels(y[1]);

#list 一次只能访问一个数据

list[1:2];

#list的修改 

#增加

y$sex <- '男';

y[5] <- 170;

y[3];

#修改

y$sex <- '女';

y;

#删除

y$sex <- NULL;

y;

#查

y == 'fudegang';

#查看长度

length(y);

#dataframe

#dataframe 定义

name <- c('张三','李四','王五');

age <-c(23,33,56);

df <- data.frame(name,age);

df;

#修改列名

colnames(df);

names(df);

names(df) <- c('name2','age2');

colnames(df);

#修改一个列名

names(df)[2] <- 'age3';

df;

names(df)[names(df) == 'age3'] <-'age4';

df;

#修改行名 

row.names(df);

row.names(df) <-0:2;

df;

#删除行

df1 <- df[-1,];

df1;

df2 <-df[-2,];

df2;

#增加行

df[,'sex'] <- c(0,1,1);

df;

#3.1 数据清洗

#重复值处理 unique() 

dd <- read.csv('1.csv',encoding = 'UTF-8');

dd;

new_dd <- unique(dd);

new_dd;

#缺失值的处理(补齐,删除,不处理)

#删除行 na.omit()

dd_1 <- read.csv('2.csv',encoding = 'UTF-8');

dd_1;

new_dd_1 <- na.omit(dd_1);

new_dd_1;

#清洗空格 trim() install.package(raster) library(raster)

dd_3 <- read.csv('3.csv');

dd_3;

install.packages('raster',lib = .libPaths());

path.package();

.libPaths();

path.package();

path.package();

install.packages('raster');

library('raster');

dd_3 <- read.csv('3.csv');

dd_3;

getwd();

setwd('D:\\RStudio\\www');

dd_3 <- read.csv('3.csv');

new_dd_3 <- trim(dd_3);

View(new_dd_3);

#3.2数据抽取

#字段抽取substr(x,start,stop)

tel <- '13811568128';

band <- substr(tel,1,3);

band;

area <- substr(tel,4,7);

area;

num <- substr(tel,8,11);

num;

getwd();

tels <- read.csv('1.csv');

fix(tels);

bands <- substr(tels[,1],1,3);

bands;

areas <- substr(tels[,1],4,7);

areas;

nums <- substr(tels[,1],8,11);

nums;

num_tels <-data.frame(tels,bands,areas,nums);

fix(num_tels);

#字段的拆分 str_split_fixed(x,split,n) 类似excel的分列功能

.libPaths();

install.packages('stringr',lib = .libPaths());

library(stringr);

items <- read.csv('2.csv',encoding = 'UTF-8',stringsAsFactors = FALSE);

fix(items);

new_bands <- str_split_fixed(items[,1],' ',n = 2 );

new_bands;

fix(new_bands);

new_items <- data.frame(new_bands[,1],items);

fix(new_items);

names(new_items) <- c('band','item');

colnames(new_items);

fix(new_items);

#数据的抽取 subset(x,condition) 类似excel的过滤功能 

getwd();

item3 <- read.table('3.csv',header = TRUE ,sep = "|",fileEncoding = 'utf-8',stringsAsFactors = FALSE);

fix(item3);

sub_item3 <- subset(item3,comments>100);

fix(sub_item3);

#3.3 数据合并

#记录合并 rbind(dataframe1,dataframe2,...)

data1 <- read.table('1_1.csv',sep = "|", header = TRUE, fileEncoding = 'utf-8', stringsAsFactors = F);

data2 <- read.table('1_2.csv', sep = '|', header = T, fileEncoding = 'utf-8', stringsAsFactors = F);

data3 <- read.table('1_3.csv', sep = '|', header = T, fileEncoding = 'utf-8', stringsAsFactors = F);

datar <- rbind(data1,data2,data3);

fix(datar);

#subset 

datab <- subset(datar,datar[,2]>10000);

fix(datab);

#字段的合并paste(x,x1,x2)

data4 <- read.table('2.csv',sep = ' ');

fix(data4);

data5 <- paste(data4[,1],data4[,2],data4[,3], sep = '');

new_data5 <- data.frame(data4,data5);

fix(new_data5);

#字段匹配类似excel的vlookup merge(x,y,by.x=c(),by.y=())

items6 <- read.table('3_1.csv',sep = '|', header = F, fileEncoding = 'utf-8');

fix(items6);

price <- read.table('3_2.csv',sep = '|', header = F, fileEncoding = 'utf-8');

colnames(items6);

itmesprice <- merge(price, items6, by.x=c('V1'), by.y=c('V1'));

itmesprice <- merge(items6,price, by.x=c(names(items6)[1]), by.y=c('V1'));

fix(itmesprice);

#3.4 简单计算

getwd();

dada <- read.csv('1.csv',fileEncoding = 'utf-8',header = T, stringsAsFactors = F, sep = '|');

colnames(dada);

cost <- dada$price*dada$num;

new_dada <- data.frame(dada,cost);

fix(new_dada);

#数据标准化 一般指01标准化 

dada2 <- read.csv('2.csv',fileEncoding = 'utf-8');

View(dada2);

colnames(dada2);

scale <- (dada2$score-min(dada2$score))/(max(dada2$score)-min(dada2$score));

new_dada2 <- data.frame(dada2,scale);

fix(new_dada2);

#数据分组

cc <- read.csv('3.csv',header = T,sep = '|',fileEncoding = 'utf-8');

options(digits = 15);

cc;

fix(cc);

level <- ifelse(

  cc$cost <=20,'(0,20)',

  ifelse(

    cc$cost <= 40,'(20,40)',

    ifelse(

      cc$cost <= 60 , '(40,60)',

      ifelse(

        cc$cost <= 80,'(60,80)','(80-以上'

      )

    )

  )

);

level;

cc1 <- data.frame(cc,level);

fix(cc1);

#3.5 日期处理

#日期转换posixit

strdata <- '2016-4-28';

posixlt <- as.POSIXlt(strdata,format = '%Y-%m-%d');

posixlt;

strdata2 <- '2016/4/29';

posixlt <- as.POSIXlt(strdata2, format = '%Y/%m/%d');

posixlt;

#日期格式化

newstrdata <- format(posixlt,format = '%Y-%m-%d');

newstrdata;

#日期抽取

xxx <- read.csv('1.csv',header = T);

fix(xxx);

pos <- as.POSIXlt(xxx$注册时间 ,format = '%Y-%m-%d');

fix(www);

yeas <- www$year +1900 ;

mon <- www$mon + 1;

newwww <- data.frame(www,yeas,mon);

View(newwww);

#4.1数据分析

#基本统计 计数 求合 平均值  summary( ) length sum mean var sd

getwd();

.libPaths();

setwd('D:\\RStudio\\www');

getwd();

ali <- read.csv('1.csv',fileEncoding = 'utf-8');

ali;

summary(ali$score);

#计数

length(ali$score);

#求平均值

mean(ali$score);

#最大值

max(ali$score);

#最小值

min(ali$score);

#方差

var(ali$score);

#标准差

sd(ali$score);

#求合

sum(ali$score);

#4.2 分组分析 相当于excel的数据透视表 aggregate(统计量~ )

aggregate(ali$name~ali$class,data = ali,FUN = length);

aggregate(ali$score~ali$class,data = ali,FUN = sum);

aggregate(ali$score~ali$class,data = ali,FUN = mean);

colnames(ali);

#4.3 交叉分析tapply(统计量,list(纵轴行,横轴列),FUN=统计函数) 数据透视表

用户明细 <- read.csv('用户明细.csv',stringsAsFactors = F);

fix(用户明细);

年龄分组 <- ifelse(

  user$年龄 <= 20 ,'20岁及20岁以下',

  ifelse(

    用户明细$年龄 <= 30 ,'21岁至29岁','30岁及以上'

  )

)

colnames(用户明细);

fix(年龄分组);

用户明细 <- data.frame(用户明细,年龄分组);

fix(用户明细);

tapply(用户明细$用户ID, list(用户明细$年龄分组,用户明细$性别),FUN = length);

#结构分析  prop.table()

getwd();

setwd('D:\\RStudio\\www');

bibi <- read.csv('5.csv',stringsAsFactors = F,fileEncoding = 'utf-8');

fix(bibi);

colnames(bibi);

bibi1 <- tapply(bibi$月消费.元., list(bibi$通信品牌), length);

bibi1;

prop.table(bibi1);

bibi1 <- tapply(bibi$月消费.元., list(bibi$省份, bibi$通信品牌), length);

bibi1;

prop.table(bibi1,margin = 1);#百分比显示

#5.1数据可视化 

#饼图 pie 

bibi1 <- tapply(bibi$月消费.元., list(bibi$通信品牌), length);

bibi1;

p <- prop.table(bibi1);

label <- paste(names(p),round(p*100,2) ,'%',sep = '');

pie(bibi1,label=label,main = '通信品牌用户结构图');

#散点图 plot(x,y,main,sub,xlab,ylab,col)

datam <- read.csv('data.csv',header= T);

colnames(datam);

plot(

  datam$广告费用,

  datam$购买用户数,

  main = '相关分析',

  sub = '广告费用和用户数之间的关系',

  xlab = '广告费用',

  ylab = '购买用户数',

  col = 'red'

);

#折线图plot(x,y,main,sub,xlab,ylab,col,type)

ds <- as.POSIXlt(datam[,1]);

year <- ds$year+1900;

moth <-  ds$mon+1;

yearm <- paste(year,'年',moth,'月',sep = '');

plot(

  yearm,

  datam$购买用户数,

  main = '相关分析',

  sub = '广告费用和用户数之间的关系',

  xlab = '广告费用',

  ylab = '购买用户数',

  col = 'red'

);

#地图地址函数 map(database,fill = F,col) 地图标注函数 text(x,y,text,cex) cex 字体的放大缩小

library(maps);

install.packages(maps);

install.packages('maps');

.libPaths("d:/R/R-3.2.3/library");

.libPaths();

install.packages('maps',lib='d:/R/R-3.2.3/library');

installed.packages();

path.package();

library(maps);

library(mapdata);

install.packages('mapdata',lib = 'd:/R/R-3.2.3/library' );

library('mapdata');

m <- map('state',fill = F);

m$names;

c <- map('china',fill = F);

# 准备地图数据

install.packages('maptools');

library(maps);

library(mapdata);

library(maptools);

china_map <- readShapePoly('bou2_4p.shp');# 读取地图空间数据

plot(china_map);

install.packages('ggplot2');

library(ggplot2);

# 用ggplot绘制

install.packages('mapproj');

ggplot(china_map,aes(x=long,y=lat,group=group)) +

  geom_polygon(fill="white",colour="grey") +

  coord_map("polyconic");

x <- china_map@data ;#读取行政信息

xs <- data.frame(x,id=seq(0:924)-1); #含岛屿共925个形状

china_map1 <- fortify(china_map);#转化为数据框

library(plyr);

china_map_data <- join(china_map1, xs, type = "full");       #合并两个数据框 提示:Joining by: id

# 准备业务数据

NAME <- unique(china_map@data$NAME);

mydata1 <- read.csv('www.csv');#读取省份数据

mydata <- data.frame(NAME,mydata1)

ccc <- runif(34,min=1,max=100) ;

mydata <- data.frame(mydata,ccc);

china_data <- join(china_map_data, mydata, type="full") ;         #合并两个数据框 提示Joining by: NAME

# 绘制地图

# 现在可以开始试试画填色地图了

ggplot(china_data, aes(x = long, y = lat, group = group, fill = ccc)) +

  geom_polygon(colour="grey40")+

  scale_fill_gradient(low="white",high="steelblue") +  #指定渐变填充色,可使用RGB

  coord_map("polyconic")        #指定投影方式为polyconic,获得常见视角中国地图

#利用sheme 函数清除不必要元素

ggplot(china_data, aes(x = long, y = lat, group = group,fill = ccc)) +

  geom_polygon(colour="grey40") +

  scale_fill_gradient(low="white",high="steelblue") +  #指定渐变填充色,可使用RGB

  coord_map("polyconic") +       #指定投影方式为polyconic,获得常见视角中国地图

  theme(               #清除不需要的元素

    panel.grid = element_blank(),

    panel.background = element_blank(),

    axis.text = element_blank(),

    axis.ticks = elemen

    t_blank(),

    axis.title = element_blank(),

    legend.position = c(0.2,0.3)

  )

#导出文件 write.table(x,file = '',sep = '',row.names = T,col.names = T,quote = T(string是否用字符扩起来))

#sep(from,to,by,length.out = 最大长度)生成任意步长的数例 

#rep(x,times)  生成任意次数的重复向量

用'demo()'来看一些示范程序,用'help()'来阅读在线帮助文件,或

用'help.start()'通过HTML浏览器来看帮助文件。

用'q()'退出R.

变量 命令 参数设置工作空间

> x <- 10;

> y <- x/7;

> y

[1] 1.428571

> options(digits=10)

> y

[1] 1.428571429

> options(digits=20)

> y

[1] 1.4285714285714286

向量 列表框

vector frame 

vector 定义: c() 限制:行列的数据要一样 访问:f[]

frame 定义: data.frame() 限制:列的数据要一样 访问:f[]   

fix()  可视化列表框

read.csv("first.csv")

read.table("first.txt",header = TRUE ,seq = "\t"  )

read.excel()

read.excel2007()

RODBC 

odbcconnectexcel()

install.packages("RODBC")

libary(RODBC) 

s = odbcconnectexcel("first.xls")

sqlfecth(s,sheet1)

无法安装rodbc 

可以试下执行:Sys.setlocale(category = "LC_ALL", locale = "us")

win+r 运行lusrmgr.msc 修改用户名

数据的导出:

数据清洗

去重

bbc <-read.csv('1.csv',encoding = 'UTF-8');encoding = 'utf-8")

bbc <- unique(bbc)

na.omit()

去掉空值

str_split_fixed(x,split,n)

安装包,指定安装包的路径

绡卸安装包

>

相关文章

  • go基础

    go 语言基础知识汇总

  • R语言基础知识汇总

    http://blog.sina.com.cn/s/blog_6bc5205e0102vma9.html inst...

  • 汇总,R语言aRtsy包生成艺术

    汇总,R语言aRtsy包生成艺术

  • R语言函数汇总

    round(x,n):x的约数,精确到n位 table(x):返回一个由x不同值个数组成的表格(通常用于整数或因子...

  • R语言资源汇总

    强烈推荐: 这是DataCamp 的联合创始人 Martijn Theuwissen写的7步从零开始学习R,里面汇...

  • R语言细节汇总

    运行脚本的快捷键:cmd+enter (mac) 工作目录是指脚本、数据、图片的默认保存位置,也是文件读取的默认位...

  • 大数据 | 从实例教你掌握R语言

    【R语言基础知识】: R:是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软...

  • R语言基础知识

    https://mp.weixin.qq.com/s/UhEzSNr-wjc61n5K2I8HTw

  • R语言基础知识

    https://nbviewer.jupyter.org/github/shixiangwang/masterR/...

  • 数据挖掘与R语言

    《数据挖掘与R语言》本书首先简要介绍了R软件的基础知识(安装、R数据结构、R编程、R的输入和输出等)。然后通过四个...

网友评论

      本文标题:R语言基础知识汇总

      本文链接:https://www.haomeiwen.com/subject/asrdoxtx.html