前面的文章已经介绍了五种不同的分类器,它们各有优缺点。我们可以很自然地将不同的分类器组合起来,而这种组合结果则被成为集成方法(ensemble method)或者元算法(meta-algorithm)。使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一种算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类器之后的集成。
一、集成方法
对于训练集数据,我们通过训练若干个个体学习器,通过一定的结合策略,就可以最终形成一个强学习器,如下图。
如何得到若干个个体学习器?
第一种就是所有的个体学习器都是一个种类的,即是同质的。比如都是决策树个体学习器,或者都是神经网络个体学习器。
第二种是所有的个体学习器不全是一个种类的,即是异质的。比如我们有一个分类问题,对训练集采用支持向量机个体学习器,逻辑回归个体学习器和朴素贝叶斯个体学习器来学习,再通过某种结合策略来确定最终的分类强学习器。
目前来说,同质个体学习器的应用是最广泛的,一般我们常说的集成学习的方法都是指的同质个体学习器。而同质个体学习器使用最多的模型是CART决策树和神经网络。同质个体学习器按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,一系列个体学习器基本都需要串行生成,代表算法是boosting系列算法,第二个是个体学习器之间不存在强依赖关系,一系列个体学习器可以并行生成,代表算法是bagging和随机森林(Random Forest)系列算法。
集成方法主要包括Bagging和Boosting两种方法,Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法,即将弱分类器组装成强分类器的方法。
1、bagging
自举汇聚法(bootstrap aggregating),也称为bagging方法。Bagging对训练数据采用自举采样(boostrap sampling),即有放回地采样数据,主要思想:
- 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
- 每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
- 对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)
随机森林是bagging的一个特化进阶版,所谓的特化是因为随机森林的弱学习器都是决策树。所谓的进阶是随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择,其基本思想没有脱离bagging的范畴。
2、Boosting
Boosting是一种与Bagging很类似的技术。Boosting的思路则是采用重赋权(re-weighting)法迭代地训练基分类器,主要思想:
- 每一轮的训练数据样本赋予一个权重,并且每一轮样本的权值分布依赖上一轮的分类结果。
- 基分类器之间采用序列式的线性加权方式进行组合。
从图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。
Boosting系列算法里最著名算法主要有AdaBoost算法和提升树(boosting tree)系列算法。提升树系列算法里面应用最广泛的是梯度提升树(Gradient Boosting Tree)。
3、Bagging、Boosting二者之间的区别
- 样本选择上:
Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。
Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。 - 样例权重:
Bagging:使用均匀取样,每个样例的权重相等。
Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。 - 预测函数:
Bagging:所有预测函数的权重相等。
Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。 - 并行计算:
Bagging:各个预测函数可以并行生成。
Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。
4、集成方法的结合策略
我们假定我得到的T个弱学习器是{h1,h2,...hT}
- 平均法(数值回归)
对于数值类的回归预测问题,通常使用的结合策略是平均法,也就是说,对于若干个弱学习器的输出进行平均得到最终的预测输出。
- 投票法(分类问题)
对于分类问题的预测,我们通常使用的是投票法。假设我们的预测类别是{c1,c2,...cK},对于任意一个预测样本x,我们的T个弱学习器的预测结果分别是(h1(x),h2(x)...hT(x))。
最简单的投票法是相对多数投票法,也就是我们常说的少数服从多数,也就是T个弱学习器的对样本x的预测结果中,数量最多的类别ci为最终的分类类别。如果不止一个类别获得最高票,则随机选择一个做最终类别。
稍微复杂的投票法是绝对多数投票法,也就是我们常说的要票过半数。在相对多数投票法的基础上,不光要求获得最高票,还要求票过半数。否则会拒绝预测。
更加复杂的是加权投票法,和加权平均法一样,每个弱学习器的分类票数要乘以一个权重,最终将各个类别的加权票数求和,最大的值对应的类别为最终类别。
以上两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果,将不同的分类算法套入到此类算法框架中一定程度上会提高了原单一分类器的分类效果,但是也增大了计算量。
下面是将决策树与这些算法框架进行结合所得到的新的算法:
Bagging + 决策树 = 随机森林
AdaBoost + 决策树 = 提升树
Gradient Boosting + 决策树 = GBDT(梯度提升树)
二、AdaBoost
AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。
具体说来,整个Adaboost 迭代算法就3步:
- 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
- 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
- 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
2.1 AdaBoost算法流程
三、基于单层决策树构建弱分类器
建立AdaBoost算法之前,我们必须先建立弱分类器,并保存样本的权重。弱分类器使用单层决策树(decision stump),也称决策树桩,它是一种简单的决策树,通过给定的阈值,进行分类。
3.1 数据集可视化
可以看到,如果想要试着从某个坐标轴上选择一个值(即选择一条与坐标轴平行的直线)来将所有的蓝色圆点和橘色圆点分开,这显然是不可能的。这就是单层决策树难以处理的一个著名问题。通过使用多颗单层决策树,我们可以构建出一个能够对该数据集完全正确分类的分类器。
3.2 构建单层决策树
通过遍历,改变不同的阈值,计算最终的分类误差,找到分类误差最小的分类方式,即为我们要找的最佳单层决策树。
3.3 基于AdaBoost分类
adaboost_train_ds函数在在第一轮迭代中,D中的所有值都相等。于是,只有第一个数据点被错分了。因此在第二轮迭代中,D向量给第一个数据点0.5的权重。这就可以通过变量aggClassEst的符号来了解总的类别。第二次迭代之后,我们就会发现第一个数据点已经正确分类了,但此时最后一个数据点却是错分了。D向量中的最后一个元素变为0.5,而D向量中的其他值都变得非常小。最后,第三次迭代之后aggClassEst所有值的符号和真是类别标签都完全吻合,那么训练错误率为0,程序终止运行。训练结果包含了三个弱分类器,其中包含了分类所需要的所有信息。一共迭代了3次,所以训练了3个弱分类器构成一个使用AdaBoost算法优化过的分类器,分类器的错误率为0。
ada_classify()函数,该函数遍历所有训练得到的弱分类器,利用单层决策树,输出的类别估计值乘以该单层决策树的分类器权重alpha,然后累加到agg_class_est上,最后通过sign函数最终的结果。可以看到,分类没有问题,(5,5)属于正类,(0,0)属于负类。
四、示例:在一个难数据集上应用 AdaBoost
机器学习实战-04-Logistic回归利用了Logistic回归来预测患有疝病的马是否能够存活,使用Sklearn的LogisticRegression()训练的分类器正确率约为73.134%,错误率约为26.866%,错误率还是蛮高的。现在我们使用AdaBoost算法,训练出一个更强的分类器,这里的数据集有所变化,之前的标签是0和1,现在将标签改为+1和-1,其他数据不变。
上面输出了AdaBoost算法训练好的分类器的组合,迭代了40次训练了40个弱分类器。最终,训练集的错误率为23.077%,测试集的错误率为23.881%,可以看到相对于Sklearn的罗辑回归方法,错误率降低了不少。这个仅仅是训练40个弱分类器的结果,如果训练更多弱分类器,效果会更好。但是当弱分类器数量过多的时会发现训练集错误率降低很多,但是测试集错误率提升了很多,这种现象就是过拟合(overfitting)。
五、应用scikit-learn构建AdaBoost分类器
sklearn.ensemble模块提供了很多集成方法,AdaBoost、Bagging、随机森林等。本文使用的是AdaBoostClassifier。
使用DecisionTreeClassifier作为使用的弱分类器,使用AdaBoost算法训练分类器。可以看到训练集的错误率为16.054%,测试集的错误率为:17.910%。更改n_estimators参数,你会发现跟我们自己写的代码,更改迭代次数的效果是一样的。n_enstimators参数过大,会导致过拟合。
六、非均衡分类问题
在机器学习的分类问题中,我们都假设所有类别的分类代价是一样的。但是事实上,不同分类的代价是不一样的,比如我们通过一个用于检测患病的系统来检测马匹是否能继续存活,如果我们把能存活的马匹检测成患病,那么这匹马可能就会被执行安乐死;如果我们把不能存活的马匹检测成健康,那么就会继续喂养这匹马。一个代价是错杀一只昂贵的动物,一个代价是继续喂养,很明显这两个代价是不一样的。
如何过滤垃圾邮件呢?如果收件箱中会出现某些垃圾邮件,但合法邮件永远不会扔进垃圾邮件夹中,那么人们是否会满意呢?癌症检测又如何呢?只要患病的人不会得不到治疗,那么再找一个医生来看看会不会更好呢(即情愿误判也不漏判)?
还可以举出很多很多这样的例子,坦白地说,在大多数情况下不同类别的分类代价并不相等。这就是非均衡分类问题。我们将会考察一种新的分类器性能度量方法,而不再是简单的通过错误率进行评价。
6.1 分类器性能度量指标
到现在为止,我们都是基于错误率来衡量分类器任务的成功程度的。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)的工具,它可以帮助人们更好地了解分类中的错误。有这样一个关于在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下图所示。
利用混淆矩阵就可以更好地理解分类中的错误了。如果矩阵中的非对角元素均为0,就会得到一个完美的分类器。
接下来,我们考虑另外一个混淆矩阵,这次的矩阵只针对一个简单的二类问题。在上图中,给出了该混淆矩阵。在这个二类问题中,如果将一个正例判为正例,那么就可以认为产生了一个真正例(True Positive,TP,也称真阳);如果对一个反例正确地判为反例,则认为产生了一个真反例(True Negative,TN,也称真阴)。相应地,另外两种情况则分别称为伪反例(False Negative,FN,也称假阴)和伪正例(False Positive,FP,也称假阳)。这4种情况如下图所示。
在分类中,当某个类别的重要性高于其他类别时,我们就可以利用上述定义来定义出多个比错误率更好的新指标。
新指标的定义及含义如下:
- 正确率(Precision)= TP/(TP+FP),给出的是预测为正例的样本中的真正正例的比例。
- 召回率(Recall)= TP/(TP+FN),给出的是预测为正例的真实正例占所有真实正例的比例。
我们可以很容易构造一个高正确率或高召回率的分类器,但是很难同时保证两者成立。如果将任何样本都判为正例,那么召回率达到百分之百而此时正确率很低。构建一个同时使正确率和召回率最大的分类器是具有挑战性的。
除了上述的评价指标,另一个用于度量分类中的非均衡的工具是:
- ROC曲线(ROC curve),ROC代表接收者操作特征(receiver operating characteristic),它最早在二战期间由电气工程师构建雷达系统时使用过。
在上图的ROC曲线中,给出了两条线,一条虚线一条实线。图中的横轴是伪正例的比例(假阳率=FP/(FP+TN)),而纵轴是真正例的比例(真阳率=TP/(TP+FN))。ROC曲线给出的是当阈值变化时假阳率和真阳率的变化情况。左下角的点所对应的是将所有样例判为反例的情况,而右上角的点对应的则是将所有样例判为正例的情况。虚线给出的是随机猜测的结果曲线。
ROC曲线不但可以用于比较分类器,还可以基于成本效益(cost-versus-benefit)分析来做出决策。由于在不同的阈值下,不同的分类器的表现情况可能各不相同,因此以某种方式将它们组合起来或许会更有意义。如果只是简单地观察分类器的错误率,那么我们就难以得到这种更深入的洞察效果了。
在理想的情况下,最佳的分类器应该尽可能地处于左上角,这就意味着分类器在假阳率很低的同时获得了很高的真阳率。例如在垃圾邮件的过滤中,这就相当于过滤了所有的垃圾邮件,但没有将任何合法邮件误识为垃圾邮件而放入垃圾邮件的文件夹中。
对不同的ROC曲线进行比较的一个指标是曲线下的面积(Area Unser the Curve,AUC)。AUC给出的是分类器的平均性能值,当然它并不能完全代替对整条曲线的观察。一个完美分类器的AUC为1.0,而随机猜测的AUC则为0.5。
6.2 处理非均衡问题的数据抽样方法
另外一种针对非均衡问题调节分类器的方法,就是对分类器的训练数据进行改造。这可以通过欠抽样(undersampling)或者过抽样(oversampling)来实现。过抽样意味着复制样例,而欠抽样意味着删除样例。不管采用哪种方式,数据都会从原始形式改造为新形式。抽样过程则可以通过随机方式或者某个预定方式来实现。
通常也会存在某个罕见的类别需要我们来识别,比如在信用卡欺诈当中。如前所述,正例类别属于罕见类别。我们希望对于这种罕见类别能尽可能保留更多的信息,因此,我们应该保留正例类别中的所有样例,而对反例类别进行欠抽样或者样例删除处理。这种方法的一个缺点就在于要确定哪些样例需要进行剔除。但是,在选择剔除的样例中可能携带了剩余样例中并不包含的有价值信息。
上述问题的一种解决办法,就是选择那些离决策边界较远的样例进行删除。假定我们有一个数据集,其中有50例信用卡欺诈交易和5000例合法交易。如果我们想要对合法交易样例进行欠抽样处理,使得这两类数据比较均衡的话,那么我们就需要去掉4950个样例,而这些样例中可能包含很多有价值的信息。这看上去有些极端,因此有一种替代的策略就是使用反例类别的欠抽样和正例类别的过抽样相混合的方法。
要对正例类别进行过抽样,我们可以复制已有样例或者加入与已有样例相似的点。一种方法是加入已有数据点的插值点,但是这种做法可能会导致过拟合的问题。
网友评论