深度优先搜索是基于树的先根遍历的。
广度优先搜索类似树的层次遍历。
图的遍历是指访问图中每一个顶点,,且只访问一次的过程。这两种遍历都会生成一个生成树,可以用类来建模。树的深度优先搜索首先访问根结点,然后递归的访问根结点的子树。类似的,图的深度优先搜索首先访问一个顶点,然后递归的访问和这个顶点相连的所有顶点。不同之处在于图可能包含环,这可能会导致无限的递归。为了避免这个问题,需要跟踪已经访问过的顶点。
深度优先搜索思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
广度优先搜索思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。
邻接矩阵实现的无向图
public class MatrixUDG {
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
/*
* 创建图(自己输入数据)
*/
public MatrixUDG() {
// 输入"顶点数"和"边数"
System.out.printf("input vertex number: ");
int vlen = readInt();
System.out.printf("input edge number: ");
int elen = readInt();
if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
System.out.printf("input error: invalid parameters!\n");
return ;
}
// 初始化"顶点"
mVexs = new char[vlen];
for (int i = 0; i < mVexs.length; i++) {
System.out.printf("vertex(%d): ", i);
mVexs[i] = readChar();
}
// 初始化"边"
mMatrix = new int[vlen][vlen];
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
System.out.printf("edge(%d):", i);
char c1 = readChar();
char c2 = readChar();
int p1 = getPosition(c1);
int p2 = getPosition(c2);
if (p1==-1 || p2==-1) {
System.out.printf("input error: invalid edge!\n");
return ;
}
mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* edges -- 边数组
*/
public MatrixUDG(char[] vexs, char[][] edges) {
// 初始化"顶点数"和"边数"
int vlen = vexs.length;
int elen = edges.length;
// 初始化"顶点"
mVexs = new char[vlen];
for (int i = 0; i < mVexs.length; i++)
mVexs[i] = vexs[i];
// 初始化"边"
mMatrix = new int[vlen][vlen];
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
int p1 = getPosition(edges[i][0]);
int p2 = getPosition(edges[i][1]);
mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}
/*
* 返回ch位置
*/
private int getPosition(char ch) {
for(int i=0; i<mVexs.length; i++)
if(mVexs[i]==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
e.printStackTrace();
}
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 读取一个输入字符
*/
private int readInt() {
Scanner scanner = new Scanner(System.in);
return scanner.nextInt();
}
/*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
private int firstVertex(int v) {
if (v<0 || v>(mVexs.length-1))
return -1;
for (int i = 0; i < mVexs.length; i++)
if (mMatrix[v][i] == 1)
return i;
return -1;
}
/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
private int nextVertex(int v, int w) {
if (v<0 || v>(mVexs.length-1) || w<0 || w>(mVexs.length-1))
return -1;
for (int i = w + 1; i < mVexs.length; i++)
if (mMatrix[v][i] == 1)
return i;
return -1;
}
/*
* 深度优先搜索遍历图的递归实现
*/
private void DFS(int i, boolean[] visited) {
visited[i] = true;
System.out.printf("%c ", mVexs[i]);
// 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
for (int w = firstVertex(i); w >= 0; w = nextVertex(i, w)) {
if (!visited[w])
DFS(w, visited);
}
}
/*
* 深度优先搜索遍历图
*/
public void DFS() {
boolean[] visited = new boolean[mVexs.length]; // 顶点访问标记
// 初始化所有顶点都没有被访问
for (int i = 0; i < mVexs.length; i++)
visited[i] = false;
System.out.printf("DFS: ");
for (int i = 0; i < mVexs.length; i++) {
if (!visited[i])
DFS(i, visited);
}
Syst
网友评论