美文网首页
HashMap源码分析

HashMap源码分析

作者: 冷冷DerFan | 来源:发表于2019-04-01 11:06 被阅读0次

HashMap源码分析

本文对jdk1.8的HashMap做了分析

首先看一下HashMap的继承图:

HashMap继承树.png

1.实现了Map接口,扩展内部方法

2.实现了Cloneable接口,可复制

3.实现了Serializable接口,可以被序列化

数据结构

jdk1.8的HashMap是数组+链表+红黑树来实现的,其中数据成员如下:

static class Node<K,V> implements Map.Entry<K,V> {
    // 哈希值,用于判断在数组哪个位置存储
    final int hash;
    // 键
    final K key;
    // 值
    V value;
    // 链表中的下一个节点
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
    // 存储数据Node的数组
    transient Node<K,V>[] table;

    transient Set<Map.Entry<K,V>> entrySet;
    // 实际存储k-v对数 
    transient int size;
    // 被修改的次数
    transient int modCount;
    // 存储的k-v对个数阈值
    int threshold;
    // 加载因子
    final float loadFactor;

初始化时,主要完成了loadFactor和threshold的初始化。默认初始化时HashMap的threshold为16,loadFactor为0.75f。

构造函数

public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

可以看到这里初始化了loadFactor,使用tableSizeFor初始化了threshold,使用位运算高效地返回了比initialCapacity大的 最小的2的整数次幂等。

值得注意的是在这里的threshold是hash桶数组的长度,在第一次进行put操作时,还会进行resize操作,将threshold重新赋值。该值为 loadFactor * threshold 0.75 * 16

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

put方法

默认put方法中会先通过性能优越的hash函数来计算哈希值

计算Key的hash值

static final int hash(Object key) {
    int h;
    // h ^ (h >>> 16)   h的高16位和低16位抑或,位运算效率更高
    // int32位,扰动函数,使得高16位和低16位的变化都会对结果造成影响
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // tab为空则需要初始化一个
    if ((tab = table) == null || (n = tab.length) == 0)
        // 初始化和resize都调用resize
        n = (tab = resize()).length;
    // 计算位置,取出元素判断,为空则插入一个新的元素
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 元素不为 null
    else {
        Node<K,V> e; K k;
        // p为已存在的Node 判断插入元素和 p hash值相同,key相同,则后面会新元素替换老元素
        // 此处先拿出老元素 p 赋值给 e
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 判断该节点为红黑树,则在树中插入元素
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 该节点为一个链表
        else {
            for (int binCount = 0; ; ++binCount) {
                // 遍历到最后一个元素
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 链表长度大于8则转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        // 实际此方法中判断table长度< 64 会resize 
                        // 只有链表长度大于8,并且table长度>= 64会转化为红黑树
                        treeifyBin(tab, hash);
                    break;
                }
                // 判断插入元素key已经存在,则退出循环,遍历到的元素为e
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            // key已经存在,则新的 value 替换老 value
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 元素个数超过容量阈值则扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

/**
 * Replaces all linked nodes in bin at index for given hash unless
 * table is too small, in which case resizes instead.
 * 链表转化为红黑树
 */
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    // tab为null则初始化数组  tab长度<64则resize,都调用resize()
    // 但不会转化为红黑树
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    // tab不为null,tab长度>64 转化为红黑树
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

/**
 * 初始化或者resize table 
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 容量 >= 1 << 30
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 容量设为 2 ^ 31 - 1
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,则扩容为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    // 旧的容量为0,则使用默认值初始化
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 扩容后重排数组
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

扩容机制

1.当容量为0,初始化为 DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY 16 * 0.75

2.容量超过最大值,赋值为最大值

3.原有没超过最大值,且实际Node个数大于阈值threshold,则数组扩容为原来的两倍,元素重新排序

以上讲述了HashMap的put方法,解决哈希冲突的拉链法,以及红黑树的转换,扩容机制等的源码分析。

相关文章

网友评论

      本文标题:HashMap源码分析

      本文链接:https://www.haomeiwen.com/subject/avbmbqtx.html