FP-growth

作者: JasonChiu17 | 来源:发表于2018-12-13 15:39 被阅读28次

    FP-growth(频繁模式增长)

    • 数据库的第一遍扫描用来统计出现的频率;第二遍扫面中考虑那些频繁元素
    优点:
    • 大约比Apriori算法快一个数量级
    缺点:
    • 实现比较困难,在某些数据集上性能会下降
    适用数据类型:
    • 标称型数据

    简单数据集及数据包装器

    def loadSimpDat():
        simpDat = [['r', 'z', 'h', 'j', 'p'],
                   ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
                   ['z'],
                   ['r', 'x', 'n', 'o', 's'],
                   ['y', 'r', 'x', 'z', 'q', 't', 'p'],
                   ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
        return simpDat
    
    def createInitSet(dataSet):
        retDict = {}
        for trans in dataSet:
            retDict[frozenset(trans)] = 1
        return retDict
    simpDat = loadSimpDat()
    initSet = createInitSet(simpDat)
    initSet
    
    {frozenset({'h', 'j', 'p', 'r', 'z'}): 1,
     frozenset({'s', 't', 'u', 'v', 'w', 'x', 'y', 'z'}): 1,
     frozenset({'z'}): 1,
     frozenset({'n', 'o', 'r', 's', 'x'}): 1,
     frozenset({'p', 'q', 'r', 't', 'x', 'y', 'z'}): 1,
     frozenset({'e', 'm', 'q', 's', 't', 'x', 'y', 'z'}): 1}
    

    构建FP树

    #节点数据结构
    class treeNode:
        def __init__(self,nameValue,numOccur,parentNode):
            self.name = nameValue
            self.count = numOccur
            self.nodeLink = None
            self.parent = parentNode
            self.children = {}
        def inc(self,numOccur):
            self.count += numOccur
        def disp(self,ind=1):
            print(' '*ind,self.name,' ',self.count)
            for child in self.children.values(): #self.children.values()是一个节点
                child.disp(ind+1)
    
    rootNode = treeNode('pyramid',9,None) #创建一个单节点
    rootNode.children['eye'] = treeNode('eye', 13, None)
    rootNode.children['phoenix'] = treeNode('phoenix', 3, None)
    rootNode.disp()
    
      pyramid   9
       eye   13
       phoenix   3
    
    #构建FP树
    def createTree(dataSet, minSup=1): 
        headerTable = {}
        
        #第一次扫描D
        for trans in dataSet:#每个事务
            for item in trans:#某个事务的每个元素
                headerTable[item] = headerTable.get(item, 0) + dataSet[trans] #统计每个元素出现的频率
        headerTableCopy = headerTable.copy()
        for k in headerTableCopy.keys():  #过滤
            if headerTable[k] < minSup: 
                del(headerTable[k])
        
        #单元素频繁项集
        freqItemSet = set(headerTable.keys())
    #     print ('freqItemSet: ',freqItemSet)#freqItemSet:  {'y', 'z', 's', 't', 'x', 'r'}
        if len(freqItemSet) == 0: return None, None  #若所有项都不频繁
        
        for k in headerTable:
            headerTable[k] = [headerTable[k], None] #格式化 headerTable 
    #     print(headerTable)#{'z': [5, None], 'r': [3, None], 'y': [3, None], 's': [3, None], 't': [3, None], 'x': [4, None]}
    
        retTree = treeNode('Null Set', 1, None) #创建根节点
        
        #第二次扫描D
        for tranSet, count in dataSet.items(): #遍历每一个事务
            localD = {}
            for item in tranSet:  #遍历每一个元素
                if item in freqItemSet:#若元素是频繁的
                    localD[item] = headerTable[item][0] #记录个数
    #         print(localD)#{'z': 5, 'r': 3}
            if len(localD) > 0:#一个事务中,频繁项至少有一个,则增长分支
                #先排序,方便增长分支,排序之后的头指针表
                orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
    #             print(orderedItems)#[1'z', 'r']
                #增长分支
                updateTree(orderedItems, retTree, headerTable, count)#增长
        return retTree, headerTable 
    
    #增长分支
    def updateTree(items, inTree, headerTable, count):
        if items[0] in inTree.children:#若第一个元素是子节点,inTree.children:dict
            inTree.children[items[0]].inc(count) #计数+1
        else:   
            inTree.children[items[0]] = treeNode(items[0], count, inTree)#创建分支
            if headerTable[items[0]][1] == None: #若指针为空
                headerTable[items[0]][1] = inTree.children[items[0]]#指针指向本节点
            else:#若指针已经有指向,则再更新,在末尾添加一个指向
                updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
        if len(items) > 1:#items[1::]:删除第一个元素,继续创建分支
            updateTree(items[1::], inTree.children[items[0]], headerTable, count)
    
    #在末尾添加指针
    def updateHeader(nodeToTest, targetNode):   
        while (nodeToTest.nodeLink != None):    #沿着nodelink到达链表末尾
            nodeToTest = nodeToTest.nodeLink
        nodeToTest.nodeLink = targetNode #添加下一个指向
    
    myFPtree,myHeaderTab = createTree(initSet, minSup=3)
    myFPtree.disp()
    
      Null Set   1
       z   5
        r   1
        x   3
         y   2
          s   2
           t   2
         r   1
          y   1
           t   1
       x   1
        r   1
         s   1
    
    myHeaderTab
    
    {'r': [3, <__main__.treeNode at 0x7f5cfc1e1e80>],
     'z': [5, <__main__.treeNode at 0x7f5cfc1a5c88>],
     'x': [4, <__main__.treeNode at 0x7f5cfc1e1e48>],
     'y': [3, <__main__.treeNode at 0x7f5cfc1e1eb8>],
     's': [3, <__main__.treeNode at 0x7f5cfc1e1da0>],
     't': [3, <__main__.treeNode at 0x7f5cfc1e1fd0>]}
    

    发现以给定元素结尾的所有路径的函数

    #上溯一条路径
    def ascendTree(leafNode, prefixPath):
        if leafNode.parent != None:#若父节点存在
            prefixPath.append(leafNode.name)
            ascendTree(leafNode.parent, prefixPath)#继续向上
    
    #找到给定元素的所有前缀路径        
    def findPrefixPath(basePat, treeNode): 
        condPats = {}
        while treeNode != None: #若节点存在
            prefixPath = []
            ascendTree(treeNode, prefixPath) #上溯路径
            if len(prefixPath) > 1: 
                condPats[frozenset(prefixPath[1:])] = treeNode.count
            treeNode = treeNode.nodeLink #跳到下一个指向的位置
        return condPats
    
    findPrefixPath('x', myHeaderTab['x'][1])
    
    {frozenset({'z'}): 3}
    
    myHeaderTab
    
    {'r': [3, <__main__.treeNode at 0x7f5cfc1e1e80>],
     'z': [5, <__main__.treeNode at 0x7f5cfc1a5c88>],
     'x': [4, <__main__.treeNode at 0x7f5cfc1e1e48>],
     'y': [3, <__main__.treeNode at 0x7f5cfc1e1eb8>],
     's': [3, <__main__.treeNode at 0x7f5cfc1e1da0>],
     't': [3, <__main__.treeNode at 0x7f5cfc1e1fd0>]}
    

    递归查找频繁项集的 mineTree 函数

    def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
        #对频繁项排序,频繁数从小到大
        bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[0])]
    #     print(bigL)#['r', 's', 't', 'x', 'y', 'z']
        
        for basePat in bigL:  #start from bottom of header table
            newFreqSet = preFix.copy()#每换一次元素,都初始化一次
    
            newFreqSet.add(basePat)
    #         print ('finalFrequent Item: ',newFreqSet)    
            
            freqItemList.append(newFreqSet)
    #         print(freqItemList)
            #1. 找到条件模式基
            condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
    #         print ('condPattBases :',basePat, condPattBases)
            
            #2. 构建条件FP树
            myCondTree, myHead = createTree(condPattBases, minSup)
    #         print ('head from conditional tree: ', myHead)
    
            if myHead != None: #3. mine cond. FP-tree
    #             print('conditional tree for: ',newFreqSet)
    #             myCondTree.disp(1)            
                mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
    
    myFPtree.disp()
    
      Null Set   1
       z   5
        r   1
        x   3
         y   2
          s   2
           t   2
         r   1
          y   1
           t   1
       x   1
        r   1
         s   1
    
    freqItemList = []
    mineTree(myFPtree, headerTable=myHeaderTab, minSup=3, preFix=set([]), freqItemList=freqItemList)
    print(freqItemList)
    
    [{'r'}, {'s'}, {'s', 'x'}, {'t'}, {'t', 'x'}, {'t', 'y', 'x'}, {'t', 'y'}, {'t', 'z'}, {'t', 'z', 'x'}, {'y', 't', 'z', 'x'}, {'y', 't', 'z'}, {'x'}, {'z', 'x'}, {'y'}, {'y', 'x'}, {'y', 'x', 'z'}, {'y', 'z'}, {'z'}]
    

    示例:从新闻网站点击流中挖掘

    parseDat = [line.split() for line in open('../../Reference Code/Ch12/kosarak.dat').readlines()]
    parseDat
    
    [['1', '2', '3'],
     ['1'],
     ['4', '5', '6', '7'],
     ['1', '8'],
     ['9', '10'],
     ['11', '6', '12', '13', '14', '15', '16'],
     ['1', '3', '7'],
     ['17', '18'],
     ['11', '6', '19', '20', '21', '22', '23', '24'],
     ['1', '25', '3'],
     ['26', '3'],
     ['11',
      '27',
      '6',
      '3',
      '28',
      '7',
      '29',
      '30',
      '31',
      '32',
      '33',
      '34',
      '35',
      '36',
      '37'],
     ['6', '2', '38'],
     ['39',
      '11',
      '27',
      '1',
      '40',
      '6',
      '41',
      '42',
      '43',
      '44',
      '45',
      '46',
      '47',
      '3',
      '48',
      '7',
      '49',
      '50',
      '51'],
     ['52', '6', '3', '53'],
     ['54', '1', '6', '55'],
     ['11', '6', '56', '57', '58', '59', '60', '61', '62', '63', '64'],
     ['3'],
     ['1', '65', '66', '67', '68', '3'],
     ['69', '11', '1', '6'],
     ['11', '70', '6'],
     ['6', '3', '71'],
     ['72', '6', '73'],
     ['74'],
     ['75', '76'],
     ['6', '3', '77'],
     ['78', '79', '80', '81'],
     ['82', '6', '83', '7', '84', '85', '86', '87', '88'],
     ['11',
      '27',
      '1',
      '6',
      '89',
      '90',
      '91',
      '92',
      '93',
      '14',
      '94',
      '95',
      '96',
      '97',
      '98',
      '99',
      '100',
      '101',
      '102',
      '103',
      '104',
      '105',
      '106',
      '107',
      '108',
      '109',
      '110',
      '111',
      '112',
      '113',
      '114',
      '115',
      '116',
      '117',
      '118',
      '119',
      '120',
      '121',
      '122',
      '123',
      '124',
      '125',
      '126',
      '127',
      '128',
      '129',
      '130',
      '131',
      '132',
      '133',
      '64',
      '134',
      '135',
      '136',
      '137'],
     ['6', '138'],
    
    对初始集合格式化,构建FP树,寻找至少被10w人浏览过的新闻报道
    initSet = createInitSet(parseDat)
    myFPtree, myHeaderTab = createTree(initSet, 100000)
    myFPtree.disp()
    
      Null Set   1
       3   76514
        1   12917
       1   16829
       6   412762
        11   261773
         3   117401
          1   34141
         1   43366
        3   68888
         1   13436
        1   16461
       11   21190
        3   9718
         1   1565
        1   1882
    
    myFreqList = []
    mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreqList)
    
    myFreqList
    
    [{'1'},
     {'1', '6'},
     {'11'},
     {'11', '6'},
     {'3'},
     {'11', '3'},
     {'11', '3', '6'},
     {'3', '6'},
     {'6'}]
    

    相关文章

      网友评论

          本文标题:FP-growth

          本文链接:https://www.haomeiwen.com/subject/avhbhqtx.html