美文网首页PAT题目分析
PAT A1015 Reversible Primes (20)

PAT A1015 Reversible Primes (20)

作者: ranerr_ | 来源:发表于2019-03-17 18:56 被阅读0次

    PAT A1015 Reversible Primes
    A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
    Now given any two positive integers N (<10​5​​) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
    Input Specification:
    The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
    Output Specification:
    For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
    Sample Input:

    73 10
    23 2
    23 10
    -2
    

    Sample Output:

    Yes
    Yes
    No
    

    分析:

    1. 判断质数+进制转换:转换进制的时候用do...while...循环来保证0转换正确
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    using namespace std;
    const int maxn = 100005;
    bool vis[maxn];
    vector<int> prime;
    void euler(int n) {
      for (int i = 2; i <= n; i++) {
        if (!vis[i])
          prime.push_back(i);
        for (int j = 0; j < prime.size() && i * prime[j] <= n; j++) {
          vis[i * prime[j]] = true;
          if (i % prime[j] == 0)
            break;
        }
      }
    }
    bool IsPrime(int n) {
      vector<int>::iterator it = lower_bound(prime.begin(), prime.end(), n);
      if (it != prime.end() && *it == n)
        return true;
      else
        return false;
    }
    void DtoK(int n, vector<int> &nink, int k) {
      nink.clear();
      while (n != 0) {
        nink.push_back(n % k);
        n /= k;
      }
    }
    void KtoD(vector<int> nink, int &n, int k) {
      n = 0;
      int weigh = 1;
      for (int i = 0; i < nink.size(); i++) {
        n += nink[i] * weigh;
        weigh *= k;
      }
    }
    int main() {
      euler(maxn);
      int n, rev_n, d;
      vector<int> nink;
      while (scanf("%d", &n), n >= 0) {
        scanf("%d", &d);
        bool flag1=false, flag2(false);
        flag1 = IsPrime(n);
        DtoK(n, nink, d);
        reverse(nink.begin(), nink.end());
        KtoD(nink, rev_n, d);
        flag2 = IsPrime(rev_n);
        if (flag1 && flag2)
          printf("Yes\n");
        else
          printf("No\n");
      }
      return 0;
    }
    
    
    #include <cstdio>
    #include <cmath>
    using namespace std;
    bool isprime(int n) {
        if(n <= 1) return false;
        int sqr = int(sqrt(n * 1.0));
        for(int i = 2; i <= sqr; i++) {
            if(n % i == 0)
                return false;
        }
        return true;
    }
    int main() {
        int n, d;
        while(scanf("%d", &n) != EOF) {
            if(n < 0) break;
            scanf("%d", &d);
            if(isprime(n) == false) {
                printf("No\n");
                continue;
            }
            int len = 0, arr[100];
            do{
                arr[len++] = n % d;
                n = n / d;
            }while(n != 0);
            for(int i = 0; i < len; i++)
                n = n * d + arr[i];
            printf("%s", isprime(n) ? "Yes\n" : "No\n");
        }
        return 0;
    }
    

    相关文章

      网友评论

        本文标题:PAT A1015 Reversible Primes (20)

        本文链接:https://www.haomeiwen.com/subject/avwumqtx.html