PAT A1015 Reversible Primes
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
分析:
- 判断质数+进制转换:转换进制的时候用
do...while...
循环来保证0
转换正确
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 100005;
bool vis[maxn];
vector<int> prime;
void euler(int n) {
for (int i = 2; i <= n; i++) {
if (!vis[i])
prime.push_back(i);
for (int j = 0; j < prime.size() && i * prime[j] <= n; j++) {
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
break;
}
}
}
bool IsPrime(int n) {
vector<int>::iterator it = lower_bound(prime.begin(), prime.end(), n);
if (it != prime.end() && *it == n)
return true;
else
return false;
}
void DtoK(int n, vector<int> &nink, int k) {
nink.clear();
while (n != 0) {
nink.push_back(n % k);
n /= k;
}
}
void KtoD(vector<int> nink, int &n, int k) {
n = 0;
int weigh = 1;
for (int i = 0; i < nink.size(); i++) {
n += nink[i] * weigh;
weigh *= k;
}
}
int main() {
euler(maxn);
int n, rev_n, d;
vector<int> nink;
while (scanf("%d", &n), n >= 0) {
scanf("%d", &d);
bool flag1=false, flag2(false);
flag1 = IsPrime(n);
DtoK(n, nink, d);
reverse(nink.begin(), nink.end());
KtoD(nink, rev_n, d);
flag2 = IsPrime(rev_n);
if (flag1 && flag2)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
#include <cstdio>
#include <cmath>
using namespace std;
bool isprime(int n) {
if(n <= 1) return false;
int sqr = int(sqrt(n * 1.0));
for(int i = 2; i <= sqr; i++) {
if(n % i == 0)
return false;
}
return true;
}
int main() {
int n, d;
while(scanf("%d", &n) != EOF) {
if(n < 0) break;
scanf("%d", &d);
if(isprime(n) == false) {
printf("No\n");
continue;
}
int len = 0, arr[100];
do{
arr[len++] = n % d;
n = n / d;
}while(n != 0);
for(int i = 0; i < len; i++)
n = n * d + arr[i];
printf("%s", isprime(n) ? "Yes\n" : "No\n");
}
return 0;
}
网友评论