美文网首页Android 收获干货Android 架构
关于Android 架构 的MVI 初级体

关于Android 架构 的MVI 初级体

作者: Darren老师 | 来源:发表于2022-06-23 18:04 被阅读0次

    引子

    Android应用程序寿命与其扩展的灵活性有关,因为它需要一个坚实的基础,这就是为什么对于每个项目来说,最重要的步骤是创建应用程序架构,在与技术团队就定义系统中包含的元素、每个元素的功能以及它们将如何相互通信进行长时间的讨论后,我们必须对整体架构进行清晰的设计。

    Android应用程序有不同的架构,与我去年的经验不同,MVVM和MVI架构是用于大型应用程序的最常见架构,即使每个应用程序都没有一种实现方式,这取决于其应用程序需求,以及处理它的开发人员风格,因为我相信,独立于Android框架,每个开发人员都有他们独特的软件开发经验,他们带来的不仅仅是他们的知识,还有他们独特的思维方式、解决问题和设计代码的方式。

    业务场景是这样的:从网络拉取 Feeds 流并持久化在数据库中,以便下次启动时可先展示本地数据,待请求返回后再刷新 Feeds。

    现援引上一篇的解决方案:

    // 实现访问网络和数据库的细节
    class NewsRepository(context: Context) {
        // 使用 Retrofit 构建请求访问网络
        private val retrofit = Retrofit.Builder()
                .baseUrl("https://api.apiopen.top")
                .addConverterFactory(MoshiConverterFactory.create())
                // 将返回数据组织成 LiveData
                .addCallAdapterFactory(LiveDataCallAdapterFactory())
                .client(OkHttpClient.Builder().build())
                .build()
        private val newsApi = retrofit.create(NewsApi::class.java)
        private var executor = Executors.newSingleThreadExecutor()
        // 使用 room 访问数据库
        private var newsDatabase = NewsDatabase.getInstance(context)
        private var newsDao = newsDatabase.newsDao()
        // 用于将新闻流传递给上层的 LiveData
        private var newsLiveData = MediatorLiveData<List<News>>()
    
        fun fetchNewsLiveData(): LiveData<List<News>?> {
            // 从数据库获取新闻
            val localNews = newsDao.queryNews()
            // 从网络获取新闻
            val remoteNews = newsApi.fetchNewsLiveData(
                mapOf("page" to "1", "count" to "4")
            )
            .let {
                Transformations.map(it) { response: ApiResponse<NewsBean>? ->
                    when (response) {
                        is ApiSuccessResponse -> {
                            val news = response.body.result
                            // 将网络新闻入库
                            news?.let {executor.submit { newsDao.insertAll(it) }}
                            news
                        }
                        else -> null
                    }
                }
            }
            // 将数据库和网络响应的 LiveData 合并
            newsLiveData.addSource(localNews) {newsLiveData.value = it}
            newsLiveData.addSource(remoteNews) {newsLiveData.value = it}
            return newsLiveData
        }
    }
    
    

    这是 Clean Architecture 中的 Repository,它提供数据访问能力,隐藏了访问网络和数据库的细节。

    关于 Clean Architecture 的详细解释可以点击[我是怎么把业务代码越写越复杂的 | MVP - MVVM - Clean Architecture
    为了使用 LiveData 承载整个数据链路,Retrofit 增加了 LiveDataCallAdapterFactory,它使得接口能直接返回 LiveData:

    interface NewsApi {
        @POST("/getWangYiNews")
        fun fetchNewsLiveData(
            @FieldMap map:Map<String,String>
        ):LiveData<ApiResponse<NewsBean>>
    }
    
    

    Room 也支持将数据库查询内容 LiveData 化:

    @Dao
    interface NewsDao {
        @Query("select * from news")
        fun queryNews(): LiveData<List<News>?>
    }
    
    

    网络 & 数据库 Flow 化

    数据链路 Flow 化从链路源头开始。

    Room 支持以 Flow 形式返回查询结果:

    @Dao
    interface NewsDao {
        @Query("select * from news")
        fun queryNewsFlow(): Flow<List<News>?>
    }
    
    

    Retrofit 并未支持 Flow 形式的接口返回值,于是在 GitHub 上找了一遍,有是有,但 star 数都很少,不太敢用。正在犹豫之际,看到了下面 retrofit 官方的回复:[[Feature Request] Support adapter for Kotlin Coroutine Flow · Issue #3497 · square/retrofit (github.com)
    有人提 issue 希望 retrofit 官方支持接口 Flow 化,但作者回复说网络请求返回的是“一个异步结果”而不是“一串异步结果”,所以suspend就够用了。如果想要将接口 Flow 化,可以这样做:

    flow {
      emit(getPosts())
    }
    
    

    作者接着说:“如果有机会重写 RxJava 的 call adapter,可能也不会支持接口 Observable 化。”

    醍醐灌顶,立马照做:

    interface NewsApi {
        @POST("/getWangYiNews")
        suspend fun fetchNews(@FieldMap map:Map<String,String>): NewsBean
    }
    
    

    将接口定义为suspend方法。查询数据库内容也应该这么改:

    @Dao
    interface NewsDao {
        @Query("select * from news")
        suspend fun queryNewsSuspend(): List<News>
    }
    
    

    其实若将查询数据库的结果定义为 Flow 的话,每当数据库内容发生增删,Flow 的订阅者都会收到通知。相较于“多个异步结果”,当前场景使用“单个异步结果”更合适。

    将访问数据库及请求网络在 Repository 中转化成流:

    class NewsRepo() {
        // 访问网络的 Flow(冷流:此时并未发生网络请求)
        fun remoteNewsFlow(page: Int, count: Int) = 
            suspend { newApi.fetchNews(mapOf("page" to page, "count" to count)) }
                .asFlow() // 将 suspend 代码块转换成流
                .map { newsBean ->
                    if (newsBean.code == 200) {
                        // 请求成功,更新缓存
                        if (!newsBean.result.isNullOrEmpty()) {
                            newsDao.deleteAllNews()
                            newsDao.insertAll(newsBean.result.map { it.toNews() })
                            newsBean.result
                        } else {
                            emptyList()
                        }
                    } else {
                        throw Exception(newsBean.message)
                    }
                }
        // 访问数据库的 Flow(冷流:此时并未发生数据库查询)
        val localNewsOneShotFlow = flow {
            val news = newsDao.queryNewsSuspend()
            val newsList = news.map { it.convert() }// 将数据库数据统一为网络数据
            emit(newsList)
        }
    }
    
    

    在 Flow 数据链路的场景下,Repository 作为数据链路的起点,提供给上层的是“原始的冷流”。

    代码中虽然调用了访问网络和查询数据库的方法,但是它们是被定义在“冷流”中的,若未发生订阅行为,就不会执行。订阅行为通常是在界面中进行。

    变换 & 合流

    当链路用 LiveData 表达时,访问数据库和网络的操作被定义在一个 Repository 的方法中:

    class NewsRepository(context: Context) {
        fun fetchNewsLiveData(): LiveData<List<News>?> {
            // 1.从数据库获取新闻
            val localNews = newsDao.queryNews()
            // 2.从网络获取新闻
            val remoteNews = newsApi.fetchNewsLiveData(mapOf("page" to "1", "count" to "4"))
            // 3.将数据库和网络响应的 LiveData 合并
            newsLiveData.addSource(localNews) {newsLiveData.value = it}
            newsLiveData.addSource(remoteNews) {newsLiveData.value = it}
            return newsLiveData
        }
    }
    
    

    并且它们是串行的,即只有当数据库访问结束后才开始网络请求,最后再将它们通过 MediatorLiveData 合流。

    而使用流时,数据库和网络操作被定义在不同的流中,这为它们提供了更灵活的合流方式。

    串行合流

    串行合流的思路是将多个流组织成“嵌套流”,然后将它们“展平”。

    拿 List 举例,List.flat()提供了在列表上的展平操作,flat 即展平,为啥要展平?因为有嵌套,比如List<List<Int>>,即 List 中每个元素还是 List:

    val lists = listOf(
        listOf(1,2,3),
        listOf(4,5,6)
    )
    Log.v("ttaylor","${lists.flatten()}") //[1, 2, 3, 4, 5, 6]
    Log.v("ttaylor","${lists.flatMap { it.map { it+1 } }}") //[2, 3, 4, 5, 6, 7]
    
    

    List.flat() 将两层嵌套结构变成单层结构,而List.flatMap()在展平的同时提供了变换内部 List 的机会。

    流也提供了类似的展平方法flattenConcat()

    flowOf(
        flow {
            emit(1)
            emit(2)
        },
        flow { emit(3) },
        flow { emit(4) },
    ).flattenConcat().collect {
        Log.v("ttaylor", "${it}") // 1,2,3,4
    }
    
    

    flattenConcat() 的合流是串行的,即只有消费了前一个流中所有的数据后才会消费后一个流。

    在 ViewModel 层对原始数据流进行合流:

    // 新闻 ViewModel 持有 repo
    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        fun newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenConcat() // 串行合流
                .map { NewsModel(it, false) }
    }
    
    // 通过 ViewModelProvider.Factory 定义构建 ViewModel 的细节(注入Repository)
    class NewsViewModelFactory(private val newsRepo: NewsRepo) : ViewModelProvider.Factory {
        override fun <T : ViewModel> create(modelClass: Class<T>): T {
            return NewsViewModel(newsRepo) as T
        }
    }
    
    

    在 Repository + Flow 的加持下,ViewModel 变得异常简单,它持有原始数据流并对其进行合流以及变换。

    两个原始数据流分别是数据库流和网络流,使用flowOf()将它们组织成Flow<Flow<News>>嵌套结构,然后调用 flattenConcat() 将它们串行合流并展平变成一个流,即先查询数据库,待查询完毕后才请求网络。合流之后还进行了数据变换,以将网络数据转换为界面数据 NewsModel:

    data class NewsModel(
        val news: List<News>, // 新闻列表
        val loading: Boolean, // 是否正在加载
        val errorMessage: String = "" // 错误信息
    )
    
    

    将新闻列表进行这样包装的目的是实现“唯一可信数据源”,这是 MVI 的关键词之一。关于它的详细介绍可以点击Android 架构最新进展 | MVI = 响应式编程 + 单向数据流 + 唯一可信数据源(该篇和本文同时发布,若链接无法跳转,可能是还未过审,请稍等~)

    并行合流

    串行合流中网络请求必须等待数据库查询,若两者能并行,则性能就会更好一点。

    flattenMerge()方法就用于多流并发的场景:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        fun newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge() // 并行合流
                .map { NewsModel(it, false) }
    }
    
    

    此时数据库和网络流会并发启动,性能是好了,但也产生了新问题。

    每个流生成的数据会合成到一个流中并通知界面刷新。若数据库流先生成数据,让用户先看到缓存新闻,然后网络流再生成数据,用新数据把老数据刷掉。这个流程是符合预期的。但万一数据库抽风了,比网络还慢咋办?这就会发生老数据刷掉新数据的 bug。

    解决方案是:当接收到网络流的数据时,就丢弃流上后面的数据。

    在 RxJava 中有一个操作符叫takeUntil()就是用来描述这个场景的。

    但 Kotlin Flow 并未提供这个方法。。。于是我开始在网上找。。。直到我发现了这个官方回复:Flow.transformWhile operator · Issue #2065 · Kotlin/kotlinx.cor…

    官方说不会提供 takeUntil() 方法。因为 Kotlin Flow 的设计原则是“简单”,只提供必要的和高度灵活性的方法,以便自定义。Kotlin Flow 中以transform开头的方法都是高度灵活的,它们通常用来定义其他操作符。在Kotlin 异步 | Flow 应用场景及原理中分析过Flow.transform()方法的灵活性。现在来看下transformWhile()

    public fun <T, R> Flow<T>.transformWhile(
        transform: suspend FlowCollector<R>.(value: T) -> Boolean // 这 lambda 带有数据发射能力
    ): Flow<R> =
        safeFlow {
            // 进行有条件的转发流数据,条件即是 transform
            return@safeFlow collectWhile { value ->
                transform(value)
            }
        }
    
    // 有条件的收集流数据
    internal suspend inline fun <T> Flow<T>.collectWhile(
        crossinline predicate: suspend (value: T) -> Boolean
    ) {
        // 自定义流收集器,描述如何发射数据
        val collector = object : FlowCollector<T> {
            override suspend fun emit(value: T) {
                // 当满足条件时才发射数据,否则丢弃流往后的数据
                if (!predicate(value)) {
                    throw AbortFlowException(this)
                }
            }
        }
        try {
            collect(collector)// 收集上游流并通过自定义的方式转发给下游
        } catch (e: AbortFlowException) {
            e.checkOwnership(collector)
        }
    }
    
    

    transformWhile() 的套路依然是拦截转发机制,即新建下游流,它生产数据的方式是通过收集上游数据,并将数据转发到一个带有发射数据能力的 lambda 中,当前这个 lambda 需要有一个返回值,该值决定了是否要终止上游流数据的生产。

    现在的问题转化为,如何让网络流告诉数据库流“我已经生成数据了你歇菜吧~”

    “流的通信”,听上去有点高大上,但转念一想,是我把问题想复杂了。因为网络和数据库流已经在 ViewModel 层合流了,它们并成一个流了,流动的是List<News>,在这个数据结构上套一层就能实现所谓的“流通信”:

    // 新闻流包装类
    data class NewsFlowWrapper(
        val news: List<News>,// 新闻列表
        val abort: Boolean // 是否中断流
    )
    
    

    用 NewsFlowWrapper 改造下 NewsRepo:

    class NewsRepo(context: Context) {
        val localNewsFlow = flow {
            val news = newsDao.queryNewsSuspend()
            val newsList = news.map { it.convert() }
            // 使用 NewsFlowWrapper 包装数据库流
            emit(NewsFlowWrapper(newsList, false))
        }
    
        fun remoteNewsFlow(page: Int, count: Int) = 
            suspend { newApi.fetchNews(mapOf("page" to page, "count" to count)) }
                .asFlow()
                .map { newsBean ->
                    if (newsBean.code == 200) {
                        if (!newsBean.result.isNullOrEmpty()) {
                            newsDao.deleteAllNews()
                            newsDao.insertAll(newsBean.result.map { it.toNews() })
                            // 网络请求成功时,中断流
                            NewsFlowWrapper(newsBean.result, true)
                        } else {
                            NewsFlowWrapper(emptyList(), false)
                        }
                    } else {
                        throw Exception(newsBean.message)
                    }
                }
    }
    
    

    接着用 transformWhile() 改造一下 ViewModel 层的合流:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        fun newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)// 总是直接转发上游数据 ,直到 abort 为 true
                    !it.abort
                }
                .map { NewsModel(it, false) }
    }
    
    

    就这样自定义了一个新操作符用于流通信。

    在讨论到用 Kotlin Flow 取代 RxJava 的时候,有一种声音说“相比 RxJava,Kotlin Flow 的操作符还很匮乏,有待丰富~”。我倒是觉得这是 RxJava 的劣势,Kotlin Flow 的优势。RxJava 让人最望而却步的正是因为复杂性,品种繁多的“流”、琳琅满目的操作符、以及 Rx 版的回调地狱。Kotlin Flow 的策略是简单 + 高灵活性。

    这样一来,用 Flow 重构的数据链路上,Repository 和 ViewModel 的界限就很清晰了:Repository 提供原始的数据流,以供 ViewModel 用各种自己喜欢的方式进行合流及变换。

    异步化

    若直接在界面中收集上述新闻流的话,程序会 crash,提示不能在主线程操作数据库。

    所有在流中的操作,默认情况下都是执行在主线程的。

    将流中的操作异步化也很简单:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        fun newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)
                    !it.abort
                }
                .map { NewsModel(it, false) }
                .flowOn(Dispatchers.IO) // 将所有上游操作都分发到 IO 线程执行
    }
    
    

    在 LiveData 承载数据链路的版本中,需自行启动线程池执行数据库操作(网络操作的异步化由OkHttp实现)。

    当用 Flow 组织数据库流和网络流时,只需一个方法就能实现异步化,无疑大大地降低了复杂度。

    捕获异常

    使用catch()可以捕获所有上游抛出的异常:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        fun newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsOneShotFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)
                    !it.abort
                }
                .map { NewsModel(it, false) }
                .flowOn(Dispatchers.IO)
                .catch {
                    // 捕获自定义异常并向流发送消息
                    if (it is YourException)
                        emit(NewsModel(emptyList(),false,"network error,show old news"))
                }
    
    

    灵活的是,在捕获异常之后还可以继续向流发送数据。比如当网络异常时,向界面发送一个带有 errorMessage 的 Model,界面根据此字段决定是否展示错误 toast。也可以在这里处理和服务端约定的特殊错误码。

    感知生命周期

    流准备地差不多了,下一步就是让界面收集流并刷新:

    class NewsActivity : AppCompatActivity() {
        private val newsViewModel by lazy {
            ViewModelProvider(
                this,
                NewsViewModelFactory(NewsRepo(this))
            )[NewsViewModel::class.java]
        }
    
        override fun onCreate(savedInstanceState: Bundle?) {
            super.onCreate(savedInstanceState)
            // 收集新闻流并展示
            lifecycleScope.launch { 
                newsViewModel.newsFlow(1, 8).collect { showNews(it) }
            }
        }
    
        // 这样刷新界面是 MVI 提倡的
        private fun showNews(newsModel: NewsModel) {
            when {
                // 展示 loading
                newsModel.loading -> {
                    showLoading()
                }
                newsModel.errorMessage.isEmpty() -> {
                    dismissLoading()
                    // 将新闻展示在 RecyclerView 上
                }
                // 展示错误提示
                else -> {
                    dismissLoading()
                    showErrorMessage(newsModel.errorMessage)
                }
            }
        }
    }
    
    

    其中展示/解散 loading 的方法定义如下:

    // 展示 loading
    fun Activity.showLoading() {
        contentView()?.apply {
            ProgressBar {
                layout_id = "pb"
                layout_width = 50
                layout_height = 50
                layout_gravity = gravity_center
            }
        }
    }
    // 解散 loading
    fun Activity.dismissLoading() {
        val pb = contentView()?.find<ProgressBar>("pb")
        pb?.let { contentView()?.removeView(it) }
    }
    
    // 获取 Activity 的 content view
    fun Activity.contentView(): FrameLayout? =
        takeIf { !isFinishing && !isDestroyed }?.window?.decorView?.findViewById(android.R.id.content)
    
    

    展示 loading 即向当前 Activity 的 contentView 添加一个子 View,解散 loading 即是移除该子 View。其中使用了 DSL 声明式地构建了界面,详细介绍可以点击Android性能优化 | 把构建布局用时缩短 20 倍(下)。

    这样写会有一个坑,若新闻流因为各种原因迟迟未生成新闻列表,此时用户切换到另一个页面,不久后新闻流有数据了,数据被推到界面,就发生了 crash,因为要刷新的界面已不再前台。

    lifecycleScope

    刚才是在lifecycleScope收集新闻流的,它是一个和生命周期对象绑定的协程域:

    public val LifecycleOwner.lifecycleScope: LifecycleCoroutineScope
        get() = lifecycle.coroutineScope
    
    public val Lifecycle.coroutineScope: LifecycleCoroutineScope
        get() {
            while (true) {
                // 获取现有 lifecycleScope
                val existing = mInternalScopeRef.get() as LifecycleCoroutineScopeImpl?
                if (existing != null) {
                    return existing
                }
                // 若没有现成的,则构建
                val newScope = LifecycleCoroutineScopeImpl(
                    this,
                    SupervisorJob() + Dispatchers.Main.immediate
                )
                // 并通过 cas + 自旋的方式保证存入 mInternalScopeRef
                if (mInternalScopeRef.compareAndSet(null, newScope)) {
                    // 开始观察生命周期变化
                    newScope.register()
                    return newScope
                }
            }
        }
    
    

    lifecycleScope 是一个LifecycleCoroutineScope实例,并以 Lifecycle 对象的扩展属性存在。之所以能这样做是因为 Lifecycle 开了后门:

    public abstract class Lifecycle {
        // 后门,方便在类的外存取“附加值”
        AtomicReference<Object> mInternalScopeRef = new AtomicReference<>();
    }
    
    

    这种动态为类新增属性的方法,在 Kotlin 源码中很常见。

    新建 LifecycleCoroutineScope 实例后,会当场调用 register() 方法观察生命周期变化:

    internal class LifecycleCoroutineScopeImpl(
        override val lifecycle: Lifecycle,
        override val coroutineContext: CoroutineContext
    ) : LifecycleCoroutineScope(), LifecycleEventObserver {
        fun register() {
            launch(Dispatchers.Main.immediate) {
                // 开始观察生命周期
                if (lifecycle.currentState >= Lifecycle.State.INITIALIZED) {
                    lifecycle.addObserver(this@LifecycleCoroutineScopeImpl)
                } else {
                    coroutineContext.cancel()
                }
            }
        }
    
        override fun onStateChanged(source: LifecycleOwner, event: Lifecycle.Event) {
            // 当生命周期为 DESTROYED 时,取消观察并取消协程中 job 的执行
            if (lifecycle.currentState <= Lifecycle.State.DESTROYED) {
                lifecycle.removeObserver(this)
                coroutineContext.cancel()
            }
        }
    }
    
    

    lifecycleScope.launch() 会立刻启动协程,并在生命周期 DESTROYED 时取消协程。

    当 Activity 被另一个 Activity 遮挡时并不会 DESTROYED,所以此时若有流数据推过来还是可以更新到界面,并导致 crash。

    flowWithLifecycle()

    为此官方提供了flowWithLifecycle()

    public fun <T> Flow<T>.flowWithLifecycle(
        lifecycle: Lifecycle,
        minActiveState: Lifecycle.State = Lifecycle.State.STARTED
    ): Flow<T> = callbackFlow {
        lifecycle.repeatOnLifecycle(minActiveState) {
            this@flowWithLifecycle.collect {
                send(it)
            }
        }
        close()
    }
    
    

    flowWithLifecycle() 内部生成了一个中间消费者callbackFlow,中间消费者会将上游数据转发给下游,不过是有条件的,只有当生命周期满足要求时才会转发。

    其中的 repeatOnLifecycle() 是 Lifecycle 的扩展方法:

    public suspend fun Lifecycle.repeatOnLifecycle(
        state: Lifecycle.State,
        block: suspend CoroutineScope.() -> Unit
    ) { ... }
    
    

    repeatOnLifecycle() 会在新的协程执行 block,当且仅当生命周期至少达到 state 状态,若生命周期未达标,则会取消 block 执行,若再次达标,则再次执行。

    让 Flow 感知生命周期的写法如下:只有当生命周期满足要求时,才收集上游并转发给下游,否则取消收集:

    class NewsActivity : AppCompatActivity() {
        private val newsViewModel by lazy {
            ViewModelProvider(
                this,
                NewsViewModelFactory(NewsRepo(this))
            )[NewsViewModel::class.java]
        }
    
        override fun onCreate(savedInstanceState: Bundle?) {
            super.onCreate(savedInstanceState)
            // 以感知生命周期的方式收集新闻流
            lifecycleScope.launch {
                repeatOnLifecycle(Lifecycle.State.STARTED) {
                    newsViewModel.newsFlow(1, 8).collect { showNews(it) }
                }
            }
        }
    }
    
    

    嵌套回调出现了,看上去有点复杂。 还好有扩展方法,可以把这些细节隐藏起来:

    // 用感知生命周期的方式收集流
    fun <T> Flow<T>.collectIn(
        lifecycleOwner: LifecycleOwner,
        minActiveState: Lifecycle.State = Lifecycle.State.STARTED,
        action: (T) -> Unit
    ): Job = lifecycleOwner.lifecycleScope.launch {
        flowWithLifecycle(lifecycleOwner.lifecycle, minActiveState).collect(action)
    }
    
    

    然后就可以像这样在界面中收集新闻流:

    class NewsActivity : AppCompatActivity() {
        private val newsViewModel by lazy {
            ViewModelProvider(
                this,
                NewsViewModelFactory(NewsRepo(this))
            )[NewsViewModel::class.java]
        }
    
        override fun onCreate(savedInstanceState: Bundle?) {
            super.onCreate(savedInstanceState)
            newsViewModel.newsFlow(1, 8).collectIn(this) { showNews(it) }
        }
    }
    
    

    超简洁,把 LiveData 又比下去了~

    这个方法需注意调用顺序,当不满足生命周期时,它只会取消订阅上游的数据,若下游还有另一流在生成数据,则无法感知生命周期。(封装的collectIn()保证了它是收集数据前的最后一个操作符)

    避免重复触发冷流

    按照上面的写法,还是有问题。当从新闻界面跳转到另一个界面再返回时,会重新查数据库,重新请求网络。。。

    因为 Repository 提供的数据库和网络流都是“冷流”。冷流只有被收集之后才会生产数据,且冷流是没有地方存数据的,当数据从上游经过若干个中间消费者最后传递给订阅者,数据被展示在界面上,但整个数据链路上没有一个地方把数据存了下了。

    又因为使用了repeatOnLifecycle(Lifecycle.State.STARTED),所以从另一个界面返回时,重新订阅了冷流,那它就毫不留情地开始重新生产数据。

    SharedFlow

    对于这种场景,解决方案是:让冷流共享,即多个订阅也不会触发冷流重新生产数据,最好能让冷流的数据被缓存,这样就能将最新的数据粘性地传递给新订阅者。

    SharedFlow由此而生:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        val newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)
                    !it.abort
                }
                .map { NewsModel(it, false) }
                .flowOn(Dispatchers.IO)
                .catch {
                    if (it is YourException)
                        emit(NewsModel(emptyList(),false,"network error,show old news"))
                }
                // 将流转换为 SharedFlow
                .shareIn(viewModelScope, SharingStarted.Lazily)
    }
    
    

    使用shareIn()将冷流转换成共享热流:

    public fun <T> Flow<T>.shareIn(
        scope: CoroutineScope,
        started: SharingStarted,// 启动策略
        replay: Int = 0 // 缓存大小,默认不缓存(非粘性)
    ): SharedFlow<T> {...}
    
    

    shareIn 是 Flow 的扩展方法:

    • started参数是启动策略,它决定了上游流的生命周期,SharingStarted.Lazily适用于当前的场景,即当共享热流有订阅者时才启动上游流,上游流将一直存活着。
    • replay参数决定了缓存的大小,若为1,表示会缓存最新的1个值,当有新订阅者,会将缓存值分发给它,实现粘性效果(同 LiveData)。默认为0不缓存。

    可以把 SharedFlow 想象成一个中间消费者,它收集上游流的数据并将其推送到热流中,然后将这些数据缓存并分享给所有的下游订阅者。

    StateFlow

    StateFlow 是一个特别的 SharedFlow,它是 Kotlin Flow 中更像 LiveData 的存在。因为:

    1. StateFlow 总是会缓存1个最新的数据,上游流产生新数据后就会覆盖旧值(LiveData 也是)。
    2. StateFlow 持有一个 value 字段,可通过stateFlow.value读取最新值(LiveData 也是)。
    3. StateFlow 是粘性的,会将缓存的最新值分发给新订阅者(LiveData 也是)。
    4. StateFlow 必须有一个初始值(LiveData 不是)。
    5. StateFlow 会过滤重复值,即新值和旧值相同时不更新。(LiveData 不是)。

    可以使用stateIn()重写新闻流:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        val newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)
                    !it.abort
                }
                .map { NewsModel(it, false) }
                .flowOn(Dispatchers.IO)
                .catch {
                    if (it is YourException)
                        emit(NewsModel(emptyList(),false,"network error,show old news"))
                }
                // 将流转换为 StateFlow
                .stateIn(viewModelScope, SharingStarted.Lazily, NewsModel(emptyList(), true))
    }
    
    

    stateIn() 中的第三个参数就是必须有的初始值,当 Repository 的原始数据流未生成数据时,初始值就已经推送给了订阅者,界面可以借此展示 loading。

    若使用 shareIn(),则可以这样展示 loading:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        val newsFlow(type: Int, count: Int) =
            flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
                .flattenMerge()
                .transformWhile {
                    emit(it.news)
                    !it.abort
                }
                .map { NewsModel(it, false) }
                .flowOn(Dispatchers.IO)
                .onStart { emit(NewsModel(emptyList(), true)) }// 展示loading
                .catch {
                    if (it is YourException)
                        emit(NewsModel(emptyList(),false,"network error,show old news"))
                }
                // 将流转换为 SharedFlow
                .shareIn(viewModelScope, SharingStarted.Lazily)
    }
    
    

    使用onStart(),它会在流被收集时立刻发生一个数据。

    到底使用 StateFlow 还是 SharedFlow?得看场景:

    1. 当需在流以外的地方访问流的最新值,则用 StateFlow。
    2. 当需过滤重复值,则用 StateFlow(在 SharedFlow 上用 distinctUntilChanged() 效果相同)。
    3. 在需粘性的场景下,则用 StateFlow(将 SharedFlow 的 replay 置为1效果相同)。

    我试图找到更多使用 StateFlow 的理由,但就像你看到的那样,大部分理由都不充分。只有第一个场景下,必用 StateFlow 不可。其他都可用 SharedFlow 代替,而且后者提供了更大的灵活性。

    MVI 化

    上面的代码已经比较接近 MVI 的模样了。

    MVI 有三个关键词:响应式编程 + 单向数据流 + 唯一可信数据源。

    现援引“单向数据流”图片如下:

    界面产生的数据叫事件(意图)Intent,它流向 ViewModel,经加工后转换成 状态State供界面刷新。

    sealed class FeedsIntent {
        // Feeds 初始化
        data class InitIntent(val type: Int, val count: Int) : FeedsIntent()
        // Feeds 加载更多
        data class MorePageIntent(val timestamp: Long, val count: Int) : FeedsIntent()
        // 删除某个帖子
        data class RemoveIntent(val id: Long) : FeedsIntent()
    }
    
    

    原本界面发起的事件是通过 ViewModel 的一个方法调用传递的。为了使用响应式编程形成数据流,得把函数调用用“数据”的形式包装起来。

    事件产生自界面,所以事件流理所当然在界面组织:

    class StateFlowActivity : AppCompatActivity() {
        private val refreshLayout: RefreshLayout
        // 在界面层组织事件流
        private val intents by lazy {
            merge(
                // 加载 Feeds 首页事件
                flowOf(FeedsIntent.InitIntent(1, 5))
                // 加载更多 Feeds 事件
                loadMoreFeedsFlow()
            )
        }
    
        private fun loadMoreFeedsFlow(): Flow<FeedsIntent> = callbackFlow {
            refreshLayout.setOnRefreshListener {
                trySend(FeedsIntent.MorePageIntent)
            }
            awaitClose()
        }
    }
    
    

    上述代码包含了两个事件,分别是加载首页和加载更多,它俩都被组织成流,并使用 merge 进行合流,merge 会将每个 Flow 中的数据合起来并发地转发到一个新的流上。

    当流被订阅后,加载首页的事件会立刻产生并无条件的分发给下游,而加载更多事件需等待上拉动作发生时才会生成。

    class StateFlowActivity : AppCompatActivity() {
        private val newsViewModel by lazy {
            ViewModelProvider(
                this,
                NewsViewModelFactory(NewsRepo(this))
            )[NewsViewModel::class.java]
        }
    
        private val intents by lazy {
            merge(
                flowOf(FeedsIntent.InitIntent(1, 5))
                loadMoreFeedsFlow()
            )
        }
    
        override fun onCreate(savedInstanceState: Bundle?) {
            super.onCreate(savedInstanceState)
            // 订阅事件流,将事件传递给 ViewModel
            intents
                .onEach(newsViewModel::send) // .onEach { newsViewModel.send(it) } 效果一样
                .launchIn(lifecycleScope)
        }
    }
    
    

    在 onCreate() 订阅事件流,每产生一个事件都会调用 NewsViewModel.send() 方法将事件传递给 ViewModel。其中::用于将一个方法变为 lambda,方法就可以作为参数传给另一个方法,以简化代码。

    NewsViewModel.send() 方法定义如下:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        // 用于接收界面事件的共享流
        private val _feedsIntent = MutableSharedFlow<FeedsIntent>()
        // 界面事件唯一入口,向流中发送事件
        fun send(intent: FeedsIntent) {
            viewModelScope.launch { _feedsIntent.emit(intent) }
        }
    }
    
    

    现在界面事件已经以数据流Flow<FeedsIntent>的方式流入了 ViewModel,下一步就是在流上进行数据变换,即流入的是 Intent,流出的是 State。遂定义一个将Flow<FeedsIntent>转化成Flow<NewsState>的扩展方法:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        // 将事件转换成状态(NewsState即是上面的NewsModel,换了个名字而已)
        private fun Flow<FeedsIntent>.toNewsStateFlow(): Flow<NewsState> = merge(
            // 加载首页事件处理
            filterIsInstance<FeedsIntent.InitIntent>()
                .flatMapConcat { it.toFetchInitPageFlow() },
            // 删除帖子事件处理
            filterIsInstance<FeedsIntent.RemoveIntent>()
                .flatMapConcat { ... },
            // 加载更多事件处理
            filterIsInstance<FeedsIntent.MorePageIntent>()
                .flatMapConcat { ... }
        )
    }
    
    

    每一个上游的FeedsIntent都会在这里被转换成一个Flow<NewsState>,就形成了Flow<Flow<NewsState>>这样的结构,然后用 flatMapConcat() 将其展平变成Flow<NewsState>

    由于有多种事件,遂使用 filterIsInstance() 按事件类型过滤,实现了事件分流,即是用流的方式写 if-else。

    其中toFetchInitPageFlow()描述了如何将加载首页事件转换成Flow<NewsState>

    // NewsViewModel.kt
    private fun FeedsIntent.InitIntent.toFetchInitPageFlow() =
        flowOf(
            newsRepo.localNewsOneShotFlow,
            newsRepo.remoteNewsFlow(this.type, this.count)
        )
            .flattenMerge()
            .transformWhile {
                emit(it.news)
                !it.abort
            }
            .map { NewsState(it, false) }
            .onStart { emit(NewsState(emptyList(), true)) }
            .catch {
                if (it is SSLHandshakeException)
                    emit(
                        NewsState(
                            emptyList(),
                            false,
                            "network error,show old news"
                        )
                    )
            }
    
    

    转化的方法即是拉取数据库以及网络(就是把之前定义好的数据库网络合流拿过来)。

    是时候把事件流以及它的变换操作合起来了:

    class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
        // 事件流
        private val _feedsIntent = MutableSharedFlow<FeedsIntent>()
        // 状态流
        val newsState =
            _feedsIntent
                .toNewsStateFlow() // 将事件流转换成状态流
                .flowOn(Dispatchers.IO) // 异步地进行变换操作
                .shareIn(viewModelScope, SharingStarted.Eagerly) // 将流转换成共享流以供界面订阅
    }
    
    

    最后界面观察状态流:

    class StateFlowActivity : AppCompatActivity() {
    
        private val newsViewModel by lazy {
            ViewModelProvider(
                this,
                NewsViewModelFactory(NewsRepo(this))
            )[NewsViewModel::class.java]
        }
        // 组织界面事件
        private val intents by lazy {
            merge(
                flowOf(FeedsIntent.InitIntent(1, 5))
                loadMoreFeedsFlow()
            )
        }
    
        override fun onCreate(savedInstanceState: Bundle?) {
            super.onCreate(savedInstanceState)
            // 数据流起点:发送事件
            intents
                .onEach(newsViewModel::send)
                .launchIn(lifecycleScope)
            // 数据流终点:消费状态
            newsViewModel.newsState
                .collectIn(this) { showNews(it) }
        }
        // 渲染界面
        private fun showNews(newsModel: NewsState) {
            when {
                newsModel.loading -> {
                    showLoading()
                }
                newsModel.errorMessage.isEmpty() -> {
                    dismissLoading()
                    newsAdapter.news = newsModel.news
                    rvNews.adapter = newsAdapter
                }
                else -> {
                    dismissLoading()
                    tv.text = newsModel.errorMessage
                }
            }
        }
    }
    
    

    (这里的 MVI 是一个半成品,比如该代码结构就无法实现“上拉加载更多”这个需求,后续文章会在此基础上做重构,欢迎持续关注~)

    LiveData vs Flow

    对于承载数据来说,Kotlin Flow 相较于 LiveData 只能说有过之而无不及:

    1. LiveData 不能方便地支持异步化。
    2. LiveData 粘性问题的解决方案虽然很多,但用起来都很变扭。
    3. LiveData 可能发生数据丢失的情况。
    4. LiveData 的数据变换能力远远不如 Flow。
    5. LiveData 多数据源的合流能力远远不如 Flow。

    除此之外,Flow 还有一点非常吸引人,那就是 简洁,Flow 可以用及其轻松简单的方式实现复杂的效果,代码的复杂度斗降,可读性斗升。更重要的是,这是大势所趋,还在犹豫什么~

    作者:唐子玄
    链接:https://juejin.cn/post/7087718088681979934

    相关文章

      网友评论

        本文标题:关于Android 架构 的MVI 初级体

        本文链接:https://www.haomeiwen.com/subject/axdmvrtx.html