美文网首页算法提高之LeetCode刷题Leetcode
Leetcode Backtracking 题型总结(1)

Leetcode Backtracking 题型总结(1)

作者: taobit | 来源:发表于2017-07-03 16:18 被阅读290次

    在 Leetcode 看到很好的一篇总结,所以我根据看到的再重新写一篇,方便自己理解

    首先理解一下什么是回溯,可以用迷宫来做比喻.
    通常走出一个迷宫的方法如下:

    1. 进入迷宫(废话...)
    2. 选一条道一直走, 一直走到有一个分岔
    3. 选最左的一条道
    4. 如果你走到了死胡同, 就回到之前最后一个分岔口, 选从左边数起第二条分岔.
    5. 一直循环 2 - 5, 直到找到出口位置

    伪代码就变成了这个样子:

    start
    while exist not found:
      for each path in the fork:
        check whether the path is safe
        if yes :
          select it and continue walk
      if all paths don't resolve the maze, return False
    end
    

    接下来看 Leetcode 原题

    Subsets

    Given a set of distinct integers, nums, return all possible subsets.

    Note: The solution set must not contain duplicate subsets.

    For example,
    If nums = [1,2,3], a solution is:

    [
    [3],
    [1],
    [2],
    [1,2,3],
    [1,3],
    [2,3],
    [1,2],
    []
    ]

    class DFS:  # 也可以把 backtracking 当成 DFS
        def subsets(self, S):
            self.result = []
            self.backtrack(0, sorted(S), [])
            return self.result
    
            # 这个是模板啊~
        def backtrack(self, start, S, temp):
            self.result.append(temp[:])
            for i in range(start , len(S)):
                temp.append(S[i])
                self.backtrack(i + 1, S, temp)
                temp.pop()
    

    看 follow up:

    Subsets II

    Given a collection of integers that might contain duplicates, nums, return all possible subsets.

    Note: The solution set must not contain duplicate subsets.

    For example,
    If nums = [1,2,2], a solution is:

    [
    [2],
    [1],
    [1,2,2],
    [2,2],
    [1,2],
    []
    ]

    这题就是多加了一个判断, 去掉重复的

    class DFS:
        def subsetsWithDup(self, S):
            self.result = []
            if len(S) == 0: return self.result
            self.helper(0, sorted(S), [])
            return self.result
    
        def backtrack(self, start, S, temp):
            self.result.append(temp[:])
            for i in range(start, len(S)):
                if i != start and S[i] == S[i - 1]: # 忽略重复的
                    continue
                temp.append(S[i])
                self.helper(i + 1, S, temp)
                temp.pop()
    

    另外一类相似的题

    Permutations

    Given a collection of distinct numbers, return all possible permutations.

    For example,
    [1,2,3] have the following permutations:
    [
    [1,2,3],
    [1,3,2],
    [2,1,3],
    [2,3,1],
    [3,1,2],
    [3,2,1]
    ]

    跟前两道题的区别在于 subset 可以不包括全部.

    class Solution:
        def permute(self, nums):
            self.result = []
            self.backtrack(nums, [])
            return self.result
    
        def backtrack(self, nums, temp):
            if len(temp) == len(nums):
                self.result.append(temp[:])
                    # 由于长度一样, 所以不用知道 index,连 i 都免了
            else:
                for n in nums:
                    if n in temp:
                        continue
                    temp.append(n)
                    self.backtrack(nums, temp)
                    temp.pop()
    

    Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations.

    For example,
    [1,1,2] have the following unique permutations:
    [
    [1,1,2],
    [1,2,1],
    [2,1,1]
    ]

    一样玩法,查重复的

    class DFS2:
        def permuteUnique(self, nums):
            self.result = []
            # 查重的方法改变了,通过一个数组来记录有没有走过这个位置的数
            self.backtrack(sorted(nums), [], [False for _ in range(len(nums))])
            return self.result
    
        def backtrack(self, nums, temp, visited):
            if len(nums) == len(temp):
                self.result.append(temp[:])
            else:
                for i in range(len(nums)):
                    # 保证前一个相同的数也必须包含在结果里
                    if visited[i] or (i > 0 and nums[i] == nums[i - 1]) and not visited[i - 1]:
                        continue
                    visited[i] = True
                    temp.append(nums[i])
                    self.backtrack(nums, temp, visited)
                    visited[i] = False
                    temp.pop()
    

    另一组题目

    Combination Sum

    Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

    The same repeated number may be chosen from C unlimited number of times.

    Note:
    All numbers (including target) will be positive integers.
    The solution set must not contain duplicate combinations.
    For example, given candidate set [2, 3, 6, 7] and target 7,
    A solution set is:
    [
    [7],
    [2, 2, 3]
    ]

    class DFS:
        # @param candidates, a list of integers
        # @param target, integer
        # @return a list of lists of integers
        def combinationSum(self, candidates, target):
            self.result= []
            self.backtrack(sorted(candidates), target, 0, 0, [])
            return self.result
    
        def backtrack(self, candidates, target, start, total, temp):
            if total > target:
                return
            elif total == target:
                self.result.append(temp[:])
            else:
                for i in range(start, len(candidates)):
                    temp.append(candidates[i])
                    # 这里注意用的是 i 而不是 i+ 1, 原因是因为一个数可以重复利用很多次
                    self.backtrack(candidates, target, i, total + candidates[i], temp)
                    temp.pop()
    

    题型变化一下, 一样是跟重复有关系
    Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

    Each number in C may only be used once in the combination.

    Note:
    All numbers (including target) will be positive integers.
    The solution set must not contain duplicate combinations.
    For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
    A solution set is:
    [
    [1, 7],
    [1, 2, 5],
    [2, 6],
    [1, 1, 6]
    ]

    class Solution:
        # @param candidates, a list of integers
        # @param target, integer
        # @return a list of lists of integers
        def combinationSum2(self, candidates, target):
            self.result = []
            self.backtrack(sorted(candidates), 0, 0, target, [])
            return self.result
    
        def backtrack(self, candidates, start, total, target, temp):
            if total > target:
                return
            elif total == target:
                self.result.append(temp[:])
            else:
                for i in range(start, len(candidates)):
                    if i > start and candidates[i] == candidates[i - 1]:
                        continue
                    temp.append(candidates[i])
                    self.backtrack(candidates, i + 1, candidates[i] + total, target, temp)
                    temp.pop()
    

    接下来的题加了个限制总共可以用多少个数

    Combination Sum III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

    Example 1:

    Input: k = 3, n = 7

    Output:

    [[1,2,4]]

    Example 2:

    Input: k = 3, n = 9

    Output:

    [[1,2,6], [1,3,5], [2,3,4]]

    要注意题目限制是 1 - 9, 9个数字

    class Solution(object):
        def combinationSum3(self, k, n):
            """
            :type k: int
            :type n: int
            :rtype: List[List[int]]
            """
            self.result = []
            if k < 0:   return []
            self.backtrack(k, n, 1, 0, [])
            return self.result
    
        def backtrack(self, k, n, start, total, temp):
            if total == n and len(temp) == k:
                self.result.append(temp[:])
            else:
                for i in range(start, 10):
                    temp.append(i)
                    self.backtrack(k, n, i + 1, i + total, temp)
                    temp.pop()
    

    至于第四题 Combination Sum IV, 包含了负数和不限制数量的条件,要用 DP 来解题, 这个以后在别的地方再提吧.
    接下来的题其实都大同小异了...

    Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome.

    Return all possible palindrome partitioning of s.

    For example, given s = "aab",
    Return

    [
    ["aa","b"],
    ["a","a","b"]
    ]

    变成了 String, 再加个回文的判定

    class Solution(object):
        # @param s, a string
        # @return a list of lists of string
        def partition(self, s):
            self.result = []
            # track each possible partition
            self.backtrack(s, 0, [])
            return self.result
    
        def backtrack(self, s, start, temp):
            if start == len(s):
                self.result.append(temp[:])
            else:
                for i in range(start, len(s)):
                    string = s[start: i + 1]
                    if self.isPalindrome(string):
                        temp.append(string)
                        self.backtrack(s, i + 1, temp)
                        temp.pop()
    
        def isPalindrome(self, string):
            left, right = 0, len(string) - 1
            while left < right:
                if string[left] != string[right]:
                    return False
                left+=1
                right-=1
            return True
    

    Restore IP Addresses

    Given a string containing only digits, restore it by returning all possible valid IP address combinations.

    For example:
    Given "25525511135",

    return ["255.255.11.135", "255.255.111.35"]. (Order does not matter)

    这道题的用法其实是一样的, 加上有效判断数字的话能快不少

    class Solution:
        # @param s, a string
        # @return a list of strings
        def restoreIpAddresses(self, s):
            if len(s) < 4 or len(s) > 12:
                return []
            self.result = []
            self.backtrack(s, 0, [])
            return self.result
    
        def backtrack(self, s, start, temp):
            if len(temp) == 4 and start == len(s):
                self.result.append(".".join(temp))
            for i in range(start, min(start + 4, len(s))):
                string = s[start: i + 1]
                if self.isValid(string):
                    temp.append(string)
                    self.backtrack(s, i + 1, temp)
                    temp.pop()
    
        def isValid(self, string):
            if not string:  return False
            if len(string) > 1 and string[0] == '0':
                return False
            return int(string) <= 255
    

    Factor Combinations

    Numbers can be regarded as product of its factors. For example,

    8 = 2 x 2 x 2;
    = 2 x 4.
    Write a function that takes an integer n and return all possible combinations of its factors.

    Note:
    You may assume that n is always positive.
    Factors should be greater than 1 and less than n.
    Examples:
    input: 1
    output:
    []
    input: 37
    output:
    []
    input: 12
    output:
    [
    [2, 6],
    [2, 2, 3],
    [3, 4]
    ]
    input: 32
    output:
    [
    [2, 16],
    [2, 2, 8],
    [2, 2, 2, 4],
    [2, 2, 2, 2, 2],
    [2, 4, 4],
    [4, 8]
    ]

    相同的算法但是 Python 超时了...这个题意很简单,就是要找到除了1和自己以外有因数的解, n <= 1 && temp.size() > 1这个条件可以把1 和自己本身的数去掉.

    import java.util.List;
    import java.util.ArrayList;
    
    public class Solution {
    
        public static void main(String[] args) {
            System.out.println(new Solution().getFactors(8));
        }
    
        private List<List<Integer>> result;
    
        public List<List<Integer>> getFactors(int n) {
            result = new ArrayList<>();
            List<Integer> temp = new ArrayList<>();
            backtrack(n, temp, 2);
            return result;
        }
    
        private void backtrack(int n, List<Integer> temp, int start){
            if (n <= 1 && temp.size() > 1) {
                result.add(new ArrayList<Integer>(temp));
            }else {
                for (int i = start; i < n + 1; i++) {
                    if (n % i == 0) {
                        temp.add(i);
                        backtrack(n/i, temp, i);
                        temp.remove(temp.size() - 1);
                    }
                }
            }
        }
    }
    
    

    相关文章

      网友评论

        本文标题:Leetcode Backtracking 题型总结(1)

        本文链接:https://www.haomeiwen.com/subject/aygvqxtx.html