美文网首页
MPLS TE总结V1.0

MPLS TE总结V1.0

作者: 王力_9541 | 来源:发表于2017-12-19 11:22 被阅读0次

    1.TE 基本概念

    1.1 TE基础

    TE隧道的主备路径实质是两条独立的lsp,隧道lsp是根据配置的显式路径规则在igp协议中进行cspf计算出来的最短的可达路径。

    TE隧道的建立由以下四个部件组成:

    • 信息发布部件:负责搜集网络信息,通过 IS-IS/OSPF TE来实现。
    • 路径选择部件:负责路径的计算,通过 CSPF来实现。
    • 信令协议部件:通过 RSVP TE或 CR-LDP协议建立 LSP。
    • 数据转发部件:实现 MPLS转发。

    以上四大部件对日常维护可见的只有前面两个,即IGP可达+TE配置完整隧道才能cspf计算成功,对应以下四个配置模块

    • IGP完整路由可达;
    • IGP协议使能TE;
    • TE全局使能;
    • 三层接口使能TE。

    显式路径(Explicit Path)功能在于隧道进行CSPF计算时,约束路径必须经过的链路或路由器,不经过的链路或路由器,使隧道按照期望的路径建立。即Explicit Path仅仅是CSPF计算中的约束条件。

    • 严格Strict显式路径指定接口ip地址,下一跳路由器必须和上一跳路由器直连;
    • 松散loose显式路径指定环回ip地址,到下一跳路由器中间可以经过多个路由器。
    • 排除exclude显式路径指定环回ip地址,指定不经过的路由器。

    1.2 Tunnel配置

    Tunnel基本配置

    Y31_Burgos_9KE#show running-config mpls-te 
    !<mpls-te>
    mpls traffic-eng
      router-id 10.0.31.195
      reoptimize timers delay installation-delay-time 600
      reoptimize timers frequency 7200  //自动重优化时间为2小时
      signalling graceful-restart   //使能GR
      signalling graceful-restart extend recovery-path
      signalling retransmit
      signalling refresh reduction
      explicit-path name Y31_527_W  //配置显示路径
        index 1 next-address loose 10.0.46.117
        index 2 next-address loose 10.0.46.113
        index 3 next-address loose 10.0.46.109
        index 4 next-address loose 10.0.46.106
        index 5 next-address loose 10.0.18.101
        index 6 next-address loose 10.0.19.93
        index 7 next-address loose 10.0.9.7
      $
      tunnel te_tunnel2843
        tunnel destination ipv4 10.0.9.7
        tunnel mpls traffic-eng auto-reoptimize main-lsp
        tunnel mpls traffic-eng bfd interval 50 min-rx 50 multiplier 3
        tunnel mpls traffic-eng record-route
        tunnel mpls traffic-eng path-option 1 explicit-path name Y31_527_W
        tunnel mpls traffic-eng hot-standby protect 1 dynamic prefer
        tunnel mpls traffic-eng reference hot-standby   //HSB独立UP
      $
      interface loopback1   //接口使能TE
      $
      interface xgei-0/2/0/1.1455   //接口使能TE
      $
    $
    !</mpls-te>
    Y31_Burgos_9KE# 
    

    使能ISIS/OSPF TE

    Y31_Burgos_9KE#show running-config isis 
    !<isis>
    router isis 0
      area 00.000a
      system-id 0000.0031.0195
      metric-style wide
      disable-snp-authentication
      lsp-size receive 1497
      lsp-size originate 1497
      spf-interval 3 level-1
      mpls traffic-eng level-1  //ISIS使能TE
      mpls traffic-eng level-2  //ISIS使能TE
      restart enable
      restart t2-timer 60 level-1
      restart t3-timer adjacency
      interface loopback1
        ip router isis
      $
      interface xgei-0/2/0/1.1455
        ip router isis
        circuit-type level-1
        authentication-type hmac-md5
        authentication encrypted 1zoaSVXijwEym/2jCaUqpA==
      $
    $
    !</isis>
    Y31_Burgos_9KE#
    

    Tunnel接口化

    Y31_Burgos_9KE#show running-config-interface te_tunnel2843
    !<if-intf>
    interface te_tunnel2843
    $
    interface te_tunnel2843
      ip unnumbered loopback1   //借用loopback1地址
    $
    !</if-intf>
    Y31_Burgos_9KE
    

    用静态路由引流到隧道

    Y31_Burgos_9KE#show running-config static
    !<static>
    ip route 10.0.9.7 255.255.255.255 te_tunnel2843 //BFD报文引流到Tunnel
    ip route 10.0.10.7 255.255.255.255 te_tunnel2843    //BGP报文引流到Tunnel
    ip route 10.0.31.191 255.255.255.255 te_tunnel4000  //PW流量引流到Tunnel
    !</static>
    Y31_Burgos_9KE#
    

    1.3 Tunnel状态

    9004#show mpls traffic-eng tunnels tunnel-id 2
    9000E#sh mpls traffic-eng tunnels te_tunnel 2
    
    Name: tunnel_2                 (Tunnel2) Destination: 100.1.1.2
      Status:
        Admin: up  Oper: up  Path:  valid  Signaling: connected //[显式当前隧道状态]
        Path option: 1, type explicit name: lsp12b (Basis for Setup)    //[Basis for setup表明当前隧道是使用哪条pathoption创建的]
        Path option: 2, type explicit name: lsp1
        Hot-standby protection:
          protect option: 1, type explicit name: lsp123b    //[表明当前的hsb配置,可以查看当前是否形成hsb保护]
      Config Parameters:
        Bandwidth: 0 kbps (Global) Priority: 7  7  Affinity: 0x0/0x0
        Resv-Style: SE
        Metric Type: IGP (default)   Upper Limit: 4294967295
        Fast-reroute: disabled  //[隧道是否使能FRR]
        BFD: disabled
        Auto-bw: disabled
        CAC: disabled
        Auto-reoptimize: disable    //[隧道是否使能自动重优化]
        Bidirect: disabled
    
      InLabel: -
      OutLabel: vlan2, 3
      RSVP Signaling Info :
        Src 100.1.1.1, Dst 100.1.1.2, Tun_Id 2, Tun_Instance 2
        RSVP Path Info:
          Explicit Route: 20.1.1.1 20.1.1.2 100.1.1.2   //[隧道实际经过的路径]
          Exclude Route: NULL
          Record Route: 100.1.1.1 20.1.1.1
          Tspec: ave rate= 0 kbits, burst= 1000 bytes, peak rate= 0 kbits
        RSVP Resv Info:
          Record Route: 100.1.1.2(3) 20.1.1.2(3)
          Fspec: ave rate= 0 kbits, burst= 1000 bytes, peak rate= 0 kbits
    
      History:
        Tunnel:
        Time since created: 0 days, 0 hours, 4 minutes  //[当前隧道创建的时间]
        Prior LSP: path option 1
        Current LSP: Uptime:0 days, 0 hours, 0 minutes  //[当前inuse lsp UP的时间]
        Last tnnl down information:
        None log record.
    

    1.4 HSB状态

    9004#show mpls traffic-eng tunnels tunnel-id 3 hot-standby
    9000E#sh mpls traffic-eng tunnels te_tunnel 3 hot-standby
    
    Name: tunnel_3                 (Tunnel3) Destination: 100.1.1.2
      Status:
        Admin: up  Oper: up  Path:  valid  Signaling: connected
      Fast Reroute Protection: None
      Hot-standby Protection: Ready //[当前hsb的状态,状态可能是ready(处于保护状态);也可能是backup in use(保护处于切换状态);也可能是none(没有形成保护)]
    
      InLabel: -
      OutLabel: vlan2, 3
      RSVP Signaling Info :
        Src 100.1.1.1, Dst 100.1.1.2, Tun_Id 3, Tun_Instance 4
        RSVP Path Info:
          Explicit Route: 20.1.1.1 20.1.1.2 100.1.1.2   //[当前hsb备份lsp经过的路径]
          Exclude Route: NULL
          Record Route: 100.1.1.1 20.1.1.1
          Tspec: ave rate= 0 kbits, burst= 1000 bytes, peak rate= 0 kbits
        RSVP Resv Info:
          Record Route: 100.1.1.2(3) 20.1.1.2(3)
          Fspec: ave rate= 0 kbits, burst= 1000 bytes, peak rate= 0 kbits
    
    
    9K_1(config-if-vlan1)#show mpls traffic-eng tunnels tunnel-id 3 hot-standby
    
    Name: tunnel_3                 (Tunnel3) Destination: 100.1.1.2
      Status:
        Admin: up  Oper: up  Path:  valid  Signaling: connected
      Fast Reroute Protection: None
      Hot-standby Protection: Backup lsp in use
    

    1.5 MBB的概念

    MBB(make before break)的含义是在维持原来LSP UP的情况下,建立新的LSP。以这种形式进行的包括:切换之后的回切,重优化(寻找更好的路径),配置改变后引起的MBB等多种情况。只要是MBB,肯定就会走WTR流程(mpls traffic-eng switch-delay)

    Y31_Burgos_9KE#show mpls traffic-eng tunnels te_tunnel 4001
    
    Name: tunnel_4001
          (Tunnel4001) Destination: 10.0.9.237
      Status:
        Admin: up  Oper: up  Path:  valid  Signalling: MBB(WTR)
        Path option: 1, type explicit name: TEST1
        Actual Bandwidth:                N/A      Tunnel Utilize:              N/A
        Actual Bandwidth In:             N/A      Tunnel Utilize In:           N/A
        Hot-standby protection:
          protect option: 1, type explicit name: TEST3 (Basis for Protect)
        PCE-authorized: NO
      Config Parameters:
        Resv-Style: SE
        Metric Type: IGP (default)   Upper Limit: 4294967295
        Hop Prior: disabled         Upper Limit: -
        Record-Route: enabled
        Facility Fast-reroute: disabled
        Detour Fast-reroute: disabled
        Bandwidth Protection: disabled
        Hot-standby-lsp Fast-reroute: disabled
        E2E: disabled
        BFD: disabled
        Policy Class: Default
        ……
    Y31_Burgos_9KE#
    

    1.6 HSB独立up

    原来TE隧道如果主备都down掉,而主由于某种原因【比如:严格或者松散指定路径等】未能够建立起来,这个时候即使备能够计算出来,隧道也无法up起来;后来开发了备独立up功能,配置如下:

    tunnel mpls traffic-eng reference hot-standby

    关于什么时候开始计算option 1的HSB

    如果隧道配置了备独立up功能,当隧道down掉后,先进行option1的重算,如果算不出来30秒会算option1的HSB;
    如果隧道目前在option2上,只有定时重优化时间到,隧道重优化到option1以后,才会算option 1的HSB;

    Y31_Burgos_9KE#show mpls traffic-eng tunnels te_tunnel 4001
    
    Name: tunnel_4001
          (Tunnel4001) Destination: 10.0.9.237
      Status:
        Admin: up  Oper: up  Path:  valid  Signalling: connected
        Path option: 1, type explicit name: TEST1
        Actual Bandwidth:                N/A      Tunnel Utilize:              N/A
        Actual Bandwidth In:             N/A      Tunnel Utilize In:           N/A
        Hot-standby protection:
          protect option: 1, type explicit name: TEST3 (Basis for Protect)
        PCE-authorized: NO
      Config Parameters:
        Resv-Style: SE
        Metric Type: IGP (default)   Upper Limit: 4294967295
        Hop Prior: disabled         Upper Limit: -
        Record-Route: enabled
        Facility Fast-reroute: disabled
        Detour Fast-reroute: disabled
        Bandwidth Protection: disabled
        Hot-standby-lsp Fast-reroute: disabled
        E2E: disabled
        BFD: disabled
        Policy Class: Default
        ……
    Y31_Burgos_9KE#
    

    1.7 隧道重建

    • 隧道down掉后,立即进行第一次重建(500ms)
    • 第一次重建失败,根据第二次重建delay时间,进行第二次重建
    ROSNG:cspf delay reactive 10    //默认10s
    ROS:mpls traffic-eng reactive-delay 10
    
    • 第二次重建失败,根据一个稳定周期尝试重建,直到重建成功
    ROSNG:unactive timer 30 //默认30s
    ROS:mpls traffic-eng unactive timer 30  //默认30s
    
    • 在之后的周期性重建期间,如果IGP链路up触发重建,不用等待30s,根据link up delay的时间进行再次重建
    ROSNG:cspf delay link-up 0
    ROS: mpls traffic-eng link-up-delay
    

    1.8 隧道切换

    前置条件:隧道配置了option1,option1的HSB,option2;

    隧道正常运行在option1上,当option1上的BFD检测到隧道出现问题后,隧道立即切换到HSB上,此时隧道会尝试立即重算option1,如果算不出来,会尝试算option2,如果option2能够算成功,隧道等WTR(一般5分钟)时间后会从HSB切换到option2,业务一直运行在隧道的option2上,直到定时重优化时间到或者有其它link-up事件触发隧道的重优化,隧道才会被重优化到option1上;

    1.9 隧道重优化

    自动重优化:从隧道UP时刻开始每间隔1小时进行1次自动重优化,重优化过程从op1开始遍历检测是否有更优的LSP路径,对主用和HSB lsp均会计算。自动重优化间隔设置

    ROS:reoptimize timers frequency 3600
    ROSNG:mpls traffic-eng auto-reoptimize interval 3600 //reoptimize tunnel all立即进行重优化
    

    IGP linkup触发隧道的重优化:对于隧道的主以及HSB都会触发重优化,link-up触发的重优化优先级要高,会立即响应;这个功能是先会触发主,如果主没有更优的话,再触发备,如果主有更优的话,那么备就会走reactive流程(相当于在重新建个备)。

    mpls traffic-eng link-up-delay 30 
    mpls traffic-eng link-up-reoptimize   
    

    该命令全局配置,一般与link-up延迟配合使用,延迟时间的长短根据路由和隧道的数量做适当调整,工程统部署为延迟30秒;

    1.10 BFD检测

    主路径BFD检测

    tunnel mpls traffic-eng bfd interval 50 min-rx 50 multiplier 3 //隧道使能
    

    只检测主路径,隧道HSB切换状态中,BFD一直处于down;直到再次切换到option1主路径,HSB切换告警消失,之后在新的主lsp上尝试重建BFD;

    HSB路径检测

    bfd-on-hotstandby-lsp enable //全局使能
    

    主隧道和HSB都会检测来回路径,必须保证BFD检测报文来回所走隧道的状态对称;

    主隧道的BFD与HSB的BFD共用一个BFD资源,所以同时只有一个BFD能够up起来;

    注意事项:如果隧道配置了两个option,又开启了HSB上启用BFD功能和备独立up功能,当隧道主备都down,备先起来的情况下,隧道从HSB往option 2切换的过程中MBB(WTR),HSB上是没有BFD的,此时如果备down掉是没有办法快速切换到主路径上去的,所以备上启BFD时建议不要和两个option一起使用

    2 基于TE的VPLS网络

    2.1 VPLS网络架构

    image

    如图所示,VPLS网络主要包括以下几个重要的组成部分:

    • AC:接入电路,用户与服务提供商之间的连接,即连接CE与PE的链路。对应的接口只能是以太网接口。
    • PW:虚链路,两个PE设备上的VSI之间的一条双向虚拟连接。它由一对方向相反的单向的MPLS VC(Virtual Circuit,虚电路)组成,也称为仿真电路。
    • Tunnel:隧道,用于承载PW,一条隧道上可以承载多条PW。隧道是一条本地PE与对端PE之间的直连通道,完成PE之间的数据透明传输,可以是MPLS或GRE隧道等。
    • PW Signaling:PW信令协议,VPLS实现的基础,用于创建和维护PW。PW信令协议还可用于自动发现VSI的对端PE设备。目前,PW信令协议主要有LDP和BGP。
    • VSI:虚拟交换实例,VPLS实例在一台PE设备上的一个以太网桥功能实体,根据MAC地址和VLAN TAG进行二层报文转发

    2.2 PW的创建

    PW是VPLS在公网上的通信隧道,它建立在MPLS(包括普通LSP和CR-LSP)或GRE等隧道之上。创建PW需要:

    • 首先在本端和对端PE之间建立MPLS或GRE等隧道。
    • 确定对端PE的地址。对于同一个VSI内的PE设备,可以通过手工配置来指定对端PE地址,也可以通过信令协议自动发现对端PE。
    • 利用LDP或BGP信令协议为PW分配多路复用分离标记(VC标签),并将分配的VC标签通告给对端PE,建立单向的VC,从而创建PW。如果PW建立在MPLS隧道之上,则PW上传输的报文将包括两层
      标签:内层标签为VC标签,用来判断报文属于的VC,从而将报文转发给正确的CE;外层标签为公网MPLS隧道标签,用来保证报文在MPLS隧道上的正确传输。

    2.3 LDP信令协议

    采用扩展LDP(远端LDP会话)作为PW信令协议的VPLS,称为Martini方式的VPLS。

    image

    如图所示,利用LDP信令协议建立PW的过程为:

    • PE和特定的VSI关联后,采用LDP的DU(Downstream unsolicited,下游自主)方式主动向对端PE发送标签映射消息,该消息中包含PWID FEC和与该PWID FEC绑定的VC标签,以及接口参数(如最大传输单元等)。
    • 如果对端PE和这个特定的PWID关联,它将接受标签映射消息,并回应自己的标签映射消息。
    • 一对单向的VC建立成功后,它们组合起来形成双向的PW,这个双向的PW可以看作是VSI上的一个虚拟以太网接口。

    Martini方式实现简单。但是LDP不能提供VPLS成员的自动发现机制,需要手工指定PE的各个对等体。新的PE加入时,每个PE上都要修改配置。

    2.4 BGP信令协议

    采用扩展BGP作为PW信令协议的VPLS,称为Kompella方式的VPLS。

    image

    如图所示,利用BGP信令协议建立PW的过程为:

    • PE利用BGP的Update消息向所有对端PE设备发送VE ID和标签块信息。其中,VE ID为与PE相连的每个Site在VPN内的唯一编号,由服务供应商统一规划;标签块包含一组连续的标签。
    • 接收到Update消息的PE设备,根据自己的VE ID和报文中的标签块,计算出唯一的一个标签值,作为VC标签。同时,接收Update消息的PE设备,根据报文中的VE ID和本地的标签块,也可以得知对端PE的VC标签值等信息。
    • 两个PE设备互相发送Update消息,并计算出VC标签后,两台设备间的PW创建成功。

    Kompella方式中,通过配置VPN Target实现了VPLS成员的自动发现,增加或删除PE时,无需手工配置,具有较好的可扩展性,但BGP协议本身比较复杂。

    2.5 AC报文封装方式

    AC上的报文封装方式分为两种:VLAN接入和Ethernet接入。其含义如下:

    • VLAN接入:CE发送给PE或PE发送给CE的以太网帧头带有一个VLAN TAG,该TAG是一个服务提供商网络为了区分用户而压入的“服务界定符”。服务界定符一般是服务提供商设备添加的,我们把这个作为服务界定符的TAG称为P-TAG。
    • Ethernet接入:CE发送给PE或PE发送给CE的以太网帧头中没有服务界定符,如果此时帧头中有VLAN TAG,则说明它只是用户报文的内部VLAN TAG,对于PE设备没有意义。这种用户内部VLAN的TAG称为U-TAG。

    2.6 PW报文封装方式

    PW由PWID和PW封装类型唯一标识。两端PE设备通告的PWID和PW封装类型必须相同。

    PW上的报文封装方式分为两种:Raw模式和Tagged模式。

    • Raw模式下,PW上传输的帧不能带P-TAG:对于CE侧的报文,如果收到带有服务界定符的报文,则将其去除后再压入PW标签和隧道标签后转发;如果收到不带服务界定符的报文,则直接压入PW标签和隧道标签后转发。对于PE侧的下行报文,根据实际配置选择添加或不添加服务界定符后转发给CE,但是它不允许重写或去除已经存在的任何TAG。
    • Tagged模式下,PW上传输的帧必须带P-TAG:对于CE侧的报文,如果收到带有服务界定符的报文,保留P-TAG,或者将P-TAG改写为对端PE期望的VLAN TAG或者空TAG(TAG值为0),再压入PW标签和隧道标签后转发;如果收到不带服务界定符的报文,则添加一个对端PE期望的VLAN TAG或空TAG后,再压入PW标签和隧道标签后转发。对于PE侧的下行报文,根据实际配置选择重写、去除或保留服务界定符后转发给CE。

    2.7 报文转发过程

    3 业务配置举例

    3.1 VPWS(VLL)

    3.1.1 本端配置(ROSNG)

    Step 1:ISIS使能TE

    V90_PLDT_SFP#show running-config isis
    !<isis>
    router isis 0
      area 00.000a
      system-id 0000.0009.0012
      metric-style wide
      disable-snp-authentication
      fast-flood 6
      i-spf
      lsp-size receive 1497
      lsp-size originate 1497
      lsp-gen-interval 1 50 50
      spf-interval 1 50 50
      mpls traffic-eng level-1
      mpls traffic-eng level-2
      redistribute static route-map redistrbute_loopback1
      restart enable
      restart t2-timer 60 level-2
      restart t3-timer adjacency
    ……
      $
    $
    !</isis>
    V90_PLDT_SFP#
    

    Step 2:互联接口使能TE

    V90_PLDT_SFP#show running-config mpls-te 
    !<mpls-te>
    mpls traffic-eng
      interface xgei-0/7/1/2.1330
      $
    $
    !</mpls-te>
    V90_PLDT_SFP#
    

    Step 3:Tunnel基本配置

    !<mpls-te>
    mpls traffic-eng
      router-id 10.0.9.12
      reoptimize timers delay installation-delay-time 600
      reoptimize timers frequency 7200
      signalling graceful-restart
      signalling graceful-restart extend recovery-path
      signalling retransmit
      signalling refresh reduction
      tunnel te_tunnel606
        tunnel destination ipv4 10.0.9.186
        tunnel mpls traffic-eng auto-reoptimize main-lsp
        tunnel mpls traffic-eng bfd interval 50 min-rx 50 multiplier 3
        tunnel mpls traffic-eng record-route
        tunnel mpls traffic-eng path-option 1 explicit-path name O66_V90_P
        tunnel mpls traffic-eng path-option 2 explicit-path name O66_V90_W
        tunnel mpls traffic-eng hot-standby protect 1 explicit-path name O66_V90_P1
        tunnel mpls traffic-eng reference hot-standby
      $
    $
    !</mpls-te>
    

    Step 4:配置TE接口化

    V90_PLDT_SFP#show running-config-interface te_tunnel606
    !<if-intf>
    interface te_tunnel606
    $
    interface te_tunnel606
      ip unnumbered loopback1
    $
    !</if-intf>
    V90_PLDT_SFP#
    

    Step 5:配置静态路由引流到Tunnel,确保BFD走Tunnel

    V90_PLDT_SFP#show running-config static
    !<static>
    ip route 10.0.9.186 255.255.255.255 te_tunnel606
    !</static>
    V90_PLDT_SFP#
    

    Step 6:配置CIP

    V90_PLDT_SFP(config)#show running-config cip 
    !<cip>
    interface cip600
      bind interface ce1-0/0/1/22:1
    $
    !</cip>
    V90_PLDT_SFP(config)# 
    

    Step 7:配置L2VPN VPWS

    !<l2vpn>
    mpls l2vpn enable
    pw pw600
    vpws 600
      access-point cip600
        access-params tdm
          distribute-period 8
          jitter-buffer 80
          traffic-statistics enable
        $
      $
      pseudo-wire pw600
        neighbour 10.0.9.186 vcid 1861201 cw-preferred
          control-word sequence-enable
          vccv bfd capability status encapsulation ip compatible cc cw
        $
      $
      default-cw-preferred
    $
    !<l2vpn>
    

    Step 7:查看VPLS状态

    V90_PLDT_SFP#show l2vpn forwardinfo 
    Headers: PWType - Pseudo Wire type and Pseudo Wire connection mode
             Llabel - Local label, Rlabel - Remote label
             VPNowner - Owner type and instance name
    Codes  : H - HUB mode, S - SPOKE mode, L - VPLS, W - VPWS, M - MSPW
             MO - MONITOR, AL - Admin-VPLS, $pw - auto_pw, R - RING-TREE
    
    PWName   PeerIP          FEC    PWType      State Llabel  Rlabel  VPNowner
    pw600    10.0.9.186      128    SAToP_E1    UP    163940  524400  W:600
    V90_PLDT_SFP#
    

    3.1.2 远端配置(ROS)

    Step 1:ISIS使能TE

    PRC00O66ZTCN001#show running-config  module isis
    Building configuration...
    !
    router isis process_tag default 
      area 00.000a
      system-id 0000.0009.0186 
      is-type level-1-2
      distance 115
      metric-style wide 
      disable-snp-authentication
      maximum-paths 1
      lsp-mtu 1497
      max-lsp-lifetime 1200
      lsp-refresh-time 900
      spf-interval 3 level-2
      mpls traffic-eng router-id loopback1
      mpls traffic-eng level-1
      mpls traffic-eng level-2
      restart enable
      restart t2-timer 60 level-2
      restart t3-timer adjacency
    !
    !
    end
    PRC00O66ZTCN001#
    

    Step 2:互联接口使能TE

    PRC00O66ZTCN001#show running-config interface vlan1359
    Building configuration...
    interface vlan 1359
      ip address 10.0.45.2 255.255.255.252
      description link to N2962 SUN-PORAC-MOUNTAINS - 10.0.45.1
      out_index 187
      ip router isis process_tag default
      isis circuit-type level-1
      isis authentication-type MD5 
      isis authentication PH3CEN 
      mpls traffic-eng tunnels
    !
    end
    PRC00O66ZTCN001#
    

    Step 3:配置Tunnel

    PRC00O66ZTCN001#show running-config section | include tunnel 606
    tunnel 606
      tunnel mode traffic-engineer dynamic
      tunnel enable
      tunnel destination 10.0.9.12
      oam-propagate auto immediately
      flowstat enable
      tunnel mpls traffic-eng record-route
      tunnel mpls traffic-eng path-option 1 explicit-path name O66_V90_P 
      tunnel mpls traffic-eng path-option 2 explicit-path name O66_V90_W 
      tunnel mpls traffic-eng hot-standby protect 1 explicit-path name O66_V90_P1
      tunnel mpls traffic-eng bfd interval 50 min_rx 50 multiplier 3
      tunnel mpls traffic-eng auto-reoptimize
      tunnel mpls traffic-eng reference hot-standby
    !
    PRC00O66ZTCN001# 
    

    Step 4:配置Tunnel接口化

    PRC00O66ZTCN001#show running-config interface tunnel606 
    Building configuration...
    interface tunnel606
      ip unnumbered loopback1 
      out_index 91
      tunnel mode mpls traffic-eng
    !
    end
    PRC00O66ZTCN001#
    

    Step 5:配置静态路由引流到Tunnel,确保BFD报文走Tunnel

    PRC00O66ZTCN001#show running-config | include ip route 10.0.9.12               
    ip route 10.0.9.12 255.255.255.255 tunnel606
    PRC00O66ZTCN001#
    

    Step 6:配置VLL

    PRC00O66ZTCN001#show running-config  section | include pw 609|cip 609
    Building configuration...
    pw 609
      mode dynamic pwe3
      pwtype e1
      peer 10.0.9.12 vcid 1861201
      tunnel 606
      apply pw-class 1:0:0
      status-notification
      sequence enable
    !
    vll 609
      service-type tdm
      mpls xconnect pw 609 
    !
    cip 609
      service-type tdm ce1_7/2/22 agnostic
      description O66_Porac<>V90PLDTSFP_GSM-01-STARITAPMP2-SFP_BSC_CAO_14-1485
      xconnect 609
      flowstat enable
    !
    PRC00O66ZTCN001#
    

    Step 7:查看VLL状态

    PRC00O66ZTCN001#show mpls l2transport vc vll vcid 1861201
    LocalIntf           LocalCircuit       DestAddress     VCID       Status M/S
    cip:609             TDM                10.0.9.12       1861201    up     null
    PRC00O66ZTCN001#
    

    3.2 VPLS(VFI)

    3.2.1 本端配置(ROSNG)

    Step 1:ISIS使能TE

    V90_PLDT_SFP#show running-config isis
    !<isis>
    router isis 0
      area 00.000a
      system-id 0000.0009.0012
      metric-style wide
      disable-snp-authentication
      fast-flood 6
      i-spf
      lsp-size receive 1497
      lsp-size originate 1497
      lsp-gen-interval 1 50 50
      spf-interval 1 50 50
      mpls traffic-eng level-1
      mpls traffic-eng level-2
      redistribute static route-map redistrbute_loopback1
      restart enable
      restart t2-timer 60 level-2
      restart t3-timer adjacency
    ……
      $
    $
    !</isis>
    V90_PLDT_SFP#
    

    Step 2:互联接口使能TE

    V90_PLDT_SFP#show running-config mpls-te 
    !<mpls-te>
    mpls traffic-eng
      interface xgei-0/7/1/2.1330
      $
    $
    !</mpls-te>
    V90_PLDT_SFP#
    

    Step 3:Tunnel基本配置

    !<mpls-te>
    mpls traffic-eng
      router-id 10.0.9.12
      reoptimize timers delay installation-delay-time 600
      reoptimize timers frequency 7200
      signalling graceful-restart
      signalling graceful-restart extend recovery-path
      signalling retransmit
      signalling refresh reduction
      tunnel te_tunnel606
        tunnel destination ipv4 10.0.9.186
        tunnel mpls traffic-eng auto-reoptimize main-lsp
        tunnel mpls traffic-eng bfd interval 50 min-rx 50 multiplier 3
        tunnel mpls traffic-eng record-route
        tunnel mpls traffic-eng path-option 1 explicit-path name O66_V90_P
        tunnel mpls traffic-eng path-option 2 explicit-path name O66_V90_W
        tunnel mpls traffic-eng hot-standby protect 1 explicit-path name O66_V90_P1
        tunnel mpls traffic-eng reference hot-standby
      $
    $
    !</mpls-te>
    

    Step 4:配置TE接口化

    V90_PLDT_SFP#show running-config-interface te_tunnel606
    !<if-intf>
    interface te_tunnel606
    $
    interface te_tunnel606
      ip unnumbered loopback1
    $
    !</if-intf>
    V90_PLDT_SFP#
    

    Step 5:配置扩展LDP(PW信令协议)

    V90_PLDT_SFP#show running-config ldp
    !<ldp>
    mpls ldp instance 1
    graceful-restart
    label-advertise for 1
    label-advertise disable
    router-id loopback1
    target-session 10.0.9.186
    $
    !</ldp>
    V90_PLDT_SFP#

    Step 6:配置静态路由引流到Tunnel,确保BFD走Tunnel

    V90_PLDT_SFP#show running-config static
    !<static>
    ip route 10.0.9.186 255.255.255.255 te_tunnel606
    !</static>
    V90_PLDT_SFP#
    

    Step 7:AC接口配置

    V90_PLDT_SFP#show running-config-interface gei-0/7/0/4
    !<if-intf>
    interface gei-0/7/0/4
      description Supreme Court Reqt_WO_17-08745
      mtu 9216
      mpls mtu 9216
      no shutdown
    $
    !</if-intf>
    V90_PLDT_SFP#
    

    Step 8:配置L2VPN VPLS

    !<l2vpn>
    pw pw100
    vpls 100
      access-point gei-0/7/0/4
        description Supreme Court Reqt_WO_17-08745
        access-params ethernet
          traffic-statistics enable
        $
      $
      pseudo-wire pw100 split-horizon
        neighbour 10.0.9.186 vcid 1861212 cw-preferred
          encapsulation tagged
          vccv bfd capability status encapsulation ip compatible cc cw
        $
      $
    $
    !</l2vpn>
    

    Step 9:查看VPLS状态

    V90_PLDT_SFP#show l2vpn forwardinfo 
    Headers: PWType - Pseudo Wire type and Pseudo Wire connection mode
             Llabel - Local label, Rlabel - Remote label
             VPNowner - Owner type and instance name
    Codes  : H - HUB mode, S - SPOKE mode, L - VPLS, W - VPWS, M - MSPW
             MO - MONITOR, AL - Admin-VPLS, $pw - auto_pw, R - RING-TREE
    
    PWName   PeerIP          FEC    PWType      State Llabel  Rlabel  VPNowner
    pw100    10.0.9.186      128    VLAN      H UP    163970  524552  L:100
    V90_PLDT_SFP#
    

    3.2.2 远端配置(ROS)

    Step 1:ISIS使能TE

    PRC00O66ZTCN001#show running-config  module isis
    Building configuration...
    !
    router isis process_tag default 
      area 00.000a
      system-id 0000.0009.0186 
      is-type level-1-2
      distance 115
      metric-style wide 
      disable-snp-authentication
      maximum-paths 1
      lsp-mtu 1497
      max-lsp-lifetime 1200
      lsp-refresh-time 900
      spf-interval 3 level-2
      mpls traffic-eng router-id loopback1
      mpls traffic-eng level-1
      mpls traffic-eng level-2
      restart enable
      restart t2-timer 60 level-2
      restart t3-timer adjacency
    !
    !
    end
    PRC00O66ZTCN001#
    

    Step 2:互联接口使能TE

    PRC00O66ZTCN001#show running-config interface vlan1359
    Building configuration...
    interface vlan 1359
      ip address 10.0.45.2 255.255.255.252
      description link to N2962 SUN-PORAC-MOUNTAINS - 10.0.45.1
      out_index 187
      ip router isis process_tag default
      isis circuit-type level-1
      isis authentication-type MD5 
      isis authentication PH3CEN 
      mpls traffic-eng tunnels
    !
    end
    PRC00O66ZTCN001#
    

    Step 3:配置Tunnel

    PRC00O66ZTCN001#show running-config section | include tunnel 606
    tunnel 606
      tunnel mode traffic-engineer dynamic
      tunnel enable
      tunnel destination 10.0.9.12
      oam-propagate auto immediately
      flowstat enable
      tunnel mpls traffic-eng record-route
      tunnel mpls traffic-eng path-option 1 explicit-path name O66_V90_P 
      tunnel mpls traffic-eng path-option 2 explicit-path name O66_V90_W 
      tunnel mpls traffic-eng hot-standby protect 1 explicit-path name O66_V90_P1
      tunnel mpls traffic-eng bfd interval 50 min_rx 50 multiplier 3
      tunnel mpls traffic-eng auto-reoptimize
      tunnel mpls traffic-eng reference hot-standby
    !
    PRC00O66ZTCN001# 
    

    Step 4:配置Tunnel接口化

    PRC00O66ZTCN001#show running-config interface tunnel606 
    Building configuration...
    interface tunnel606
      ip unnumbered loopback1 
      out_index 91
      tunnel mode mpls traffic-eng
    !
    end
    PRC00O66ZTCN001#
    

    Step 5:配置扩展LDP(PW信令协议)

    PRC00O66ZTCN001#show running-config  module ldp 
    Building configuration...
    mpls label range-dynamic config 0 16 131071
    mpls ip
    mpls ldp router-id loopback1
    mpls ldp access-fec for 1
    mpls ldp graceful-restart
    mpls l2vpn graceful-restart
    mpls ldp target-session 10.0.9.10
    !
    !        
    end
    PRC00O66ZTCN001#    
    

    Step 6:配置静态路由引流到Tunnel,确保BFD报文走Tunnel

    PRC00O66ZTCN001#show running-config | include ip route 10.0.9.12               
    ip route 10.0.9.12 255.255.255.255 tunnel606
    PRC00O66ZTCN001#
    

    Step 7:配置VFI

    pw 100
      mode dynamic pwe3
      pwtype ethernet-vlan
      peer 10.0.9.12 vcid 1861212
      tunnel 606
      apply pw-class 1:0:0
      status-notification
    !
    vfi 100
      service-type ethernet
      mode vlan-all
      mpls xconnect pw 100 
    !
    cip 100
      service-type ethernet gei_5/4
      description Supreme Court Reqt_WO_17-08745
      xconnect 100
      flowstat enable
      broadcast-limit cir 512 cbs 1000 pir 512 pbs 1000
    !
    PRC00O66ZTCN001# 
    

    Step 8:查看VFI状态

    PRC00O66ZTCN001#show mpls l2transport vc vfi vcid 1861212                      
    VFI Name                 LocalCircuit DestAddress     VCID       Status M/S
    100                      VFI          10.0.9.12       1861212    up     null
    PRC00O66ZTCN001#
    

    3.3 MSPW配置

    3.4 L2/L3层桥接

    4 故障分析方法

    4.1 LSP创建失败原因

    4.1.1 基本拓扑

    
    graph LR
    
    A[Y31]-->B[Y17]
    B[Y17]-->C[Y37]
    C[Y17]-->D[536]
    B[Y17]-->E[Y46]
    E[Y46]-->C[Y37]
    
    

    Y31站点为ISIS Level-1,其它站点为ISIS Level-1-2

    4.1.2 基本配置

    
    Y31_Burgos_9KE#show running-config mpls-te
    !<mpls-te>
    mpls traffic-eng
      router-id 10.0.31.195
      reoptimize timers delay installation-delay-time 600
      signalling graceful-restart
      signalling graceful-restart extend recovery-path
      signalling retransmit
      signalling refresh reduction
      explicit-path name TEST1
        index 1 next-address loose 10.0.46.134
        index 2 next-address strict 10.0.20.157
        index 3 next-address strict 10.0.20.154
        index 4 next-address strict 10.0.19.93
      $
      explicit-path name TEST2
        index 1 next-address loose 10.0.46.134      //Y17
        index 2 next-address strict 10.0.18.101     //Y37
        index 3 next-address strict 10.0.19.193     //536,正确的接口地址为93
      $
      explicit-path name TEST3
        index 1 next-address loose 10.0.9.245
      $
      tunnel te_tunnel4001
        tunnel destination ipv4 10.0.9.237
        tunnel mpls traffic-eng auto-reoptimize main-lsp
        tunnel mpls traffic-eng record-route
        tunnel mpls traffic-eng path-option 1 explicit-path name TEST2
      $
      interface loopback1
      $
      interface xgei-0/2/0/1.1455
      $
      interface xgei-0/2/0/2.1459
      $
      interface xgei-0/5/0/1.1458
      $
      interface xgei-0/5/0/2.1466
      $
    $
    !</mpls-te>
    Y31_Burgos_9KE#
    
    

    4.1.3 故障现象

    
    Y31_Burgos_9KE#terminal monitor    
    A notification 250317 ID 3320 level 6 occurred at 22:47:59 11-03-2017 sent by Y31_Burgos_9KE MPU-0/10/0
    %RSVP% LSP reactive.  Tunnel4001 reactive,reason:reactive timer
    A notification 250336 ID 3321 level 6 occurred at 22:47:59 11-03-2017 sent by Y31_Burgos_9KE MPU-0/10/0
    %RSVP% Tunnel state changed.  Local tunnel 4001, LSP 173 is in signal.
    A notification 250309 ID 3322 level 5 occurred at 22:47:59 11-03-2017 sent by Y31_Burgos_9KE MPU-0/10/0
    %RSVP% LSP deleted.  Delete LSP 173 (Main) in local tunnel 4001 on out_interface:  by path_option 1.
    A notification 250316 ID 3323 level 6 occurred at 22:47:59 11-03-2017 sent by Y31_Burgos_9KE MPU-0/10/0
    %RSVP% Tunnel create fail.  Tunnel4001 LSP173 create fail, reason:Cspf fail
    Y31_Burgos_9KE#no terminal monitor
    
    

    Tunnel4001 LSP创建失败, 原因是Cspf fail

    4.1.4 故障分析

    头结点诊断模式下查看LSP创建失败的节点和原因

    
    Y31_Burgos_9KE#diag
    Test commands Password:ZXR10
    Y31_Burgos_9KE(diag)#diag all
    Y31_Burgos_9KE(diag-all)#execute 203402 204 ,4001
    =============================tecp MPU-0/10/0 begin==============================
    ****************************not up lsp log info show:***************************
    time2(s)                :0              time1(s)                :563064479      
    lsp_id                  :173            role                    :1 (inuse)
    path_option             :1              
    mbb_source              :0x0 
    happen_time(s)          :563064479 (2017-11-03 22:47:59)
    err_node                :10.0.46.134    //失败的节点
    err_flag                :3 (lsp path-err del)
    err_code                :24 (Routing Problem)
    err_value               :5 (No route available toward destination)  //失败的原因
    LSP DOWN RESEAON        :Path error:routing error,no route to destination 
    ----------------------------------------------
    
    

    由于LSP需要经过L1-2的IS,头结点为L1的IS,只能诊断到L1-2节点,需要在L1-2节点继续debug

    
    ############## 10.0.46.134 #######################
    STC00Y17ZTCN001#debug isis mpls traffic-eng events
    …………
    Nov 3 23:16:20: ISIS-Cspf: (default)Start Compute L1 CSPF
    Nov 3 23:16:20: ISIS-Cspf: (default)Add head node 0000.0009.0245-00 to L1 Path,router-id is 10.0.9.245
    Nov 3 23:16:20: ISIS-Cspf:(default) Isis cspf begin strict next-hop calculate
    Nov 3 23:16:20: ISIS-Cspf: (default)Consider father node 0000.0009.0245-00, search strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf: (default)Not find neighbor match strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf: (default)Cannot find node match strict next-hop 10.0.18.101, isis cspf calculate failed!
    Nov 3 23:16:20: ISIS-Cspf: (default)Start Compute L2 CSPF
    Nov 3 23:16:20: ISIS-Cspf: (default)Add head node 0000.0009.0245-00 to L2 Path,router-id is 10.0.9.245
    Nov 3 23:16:20: ISIS-Cspf:(default) Isis cspf begin strict next-hop calculate
    Nov 3 23:16:20: ISIS-Cspf: (default)Consider father node 0000.0009.0245-00, search strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf:(default) Find neighbor 0000.0009.0245-02 match strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf:(default) Add node 0000.0009.0245-02 to L2 Path
    Nov 3 23:16:20: ISIS-Cspf: (default)Consider father node 0000.0009.0245-02, search strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf: (default)Can't find bidirection, don't consider 0000.0009.0245-00
    Nov 3 23:16:20: ISIS-Cspf:(default) Find neighbor 0000.0009.0246-00 match strict address 10.0.18.101
    Nov 3 23:16:20: ISIS-Cspf:(default) Add node 0000.0009.0246-00 to L2 Path
    Nov 3 23:16:20: ISIS-Cspf: (default)Consider father node 0000.0009.0246-00, search strict address 10.0.19.193
    Nov 3 23:16:20: ISIS-Cspf: (default)Not find neighbor match strict address 10.0.19.193
    Nov 3 23:16:20: ISIS-Cspf: (default)Cannot find node match strict next-hop 10.0.19.193, isis cspf calculate failed!
    //显示路径错误
    …………
    
    

    4.2 基本命令

    
    diag命令
    ROS:
    diag mode mp ma rsvpshowlspdowninfo te_id
    prjexec drv mp master cmdname rsvpshowlspdowninfo te_id
    ROSNG:
    execute 203402 204 ,tunnel id
    
    Debug命令
    debug isis mpls traffic-eng events---------debug cspf calculation
    debug ip rsvp temg-------------------------debug mpls-te tunnel-management
    debug ip rsvp path-compute-----------------debug mpls-te path-compute
    debug ip rsvp hot-standby------------------debug mpls-te hot-standby
    debug ip rsvp path-err---------------------debug mpls-te path-err
    debug ip rsvp path-tear--------------------debug mpls-te path-tear
    debug ip rsvp resv-err---------------------debug mpls-te resv-err
    debug ip rsvp resv-tear -------------------debug mpls-te resv-tear
    debug ip rsvp toplogy-chang----------------debug mpls-te topology-change
    
    

    相关文章

      网友评论

          本文标题:MPLS TE总结V1.0

          本文链接:https://www.haomeiwen.com/subject/ayjbwxtx.html